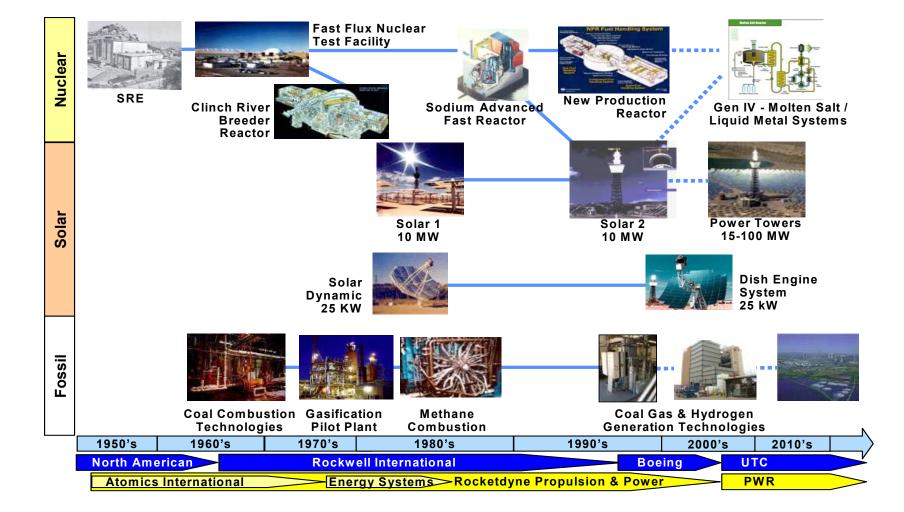
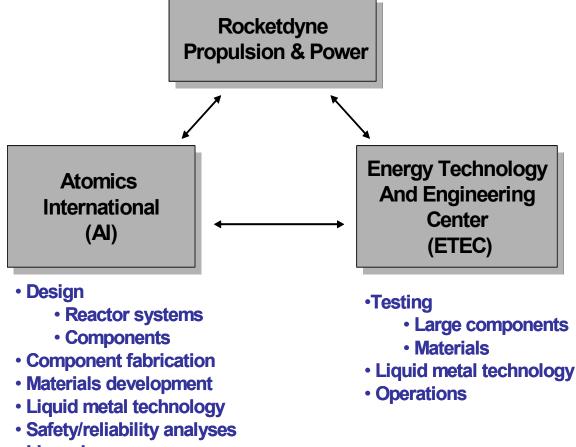


Rocketdyne Liquid Metal and Molten Salt Component Development and Test History

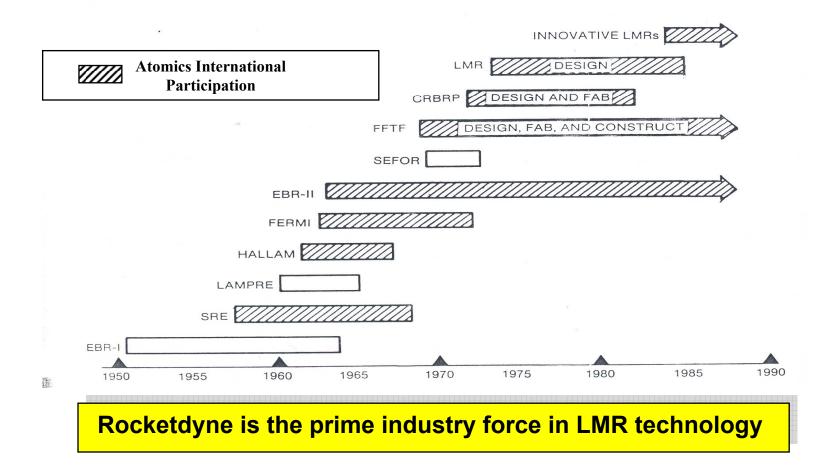

Mike McDowell Program Manager Solar & Liquid Metal Systems

Pratt & Whitney Rocketdyne


Page 1

Rocketdyne Energy Heritage

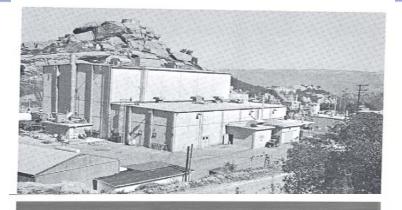
Pratt & Whitney 50+ Years of Nuclear, **Liquid Metal & Molten Salt Heritage**


United Technolog

Licensing

Wrote the "Liquid Metals Handbook" The authoritative source of liquid metal technology

Heritage in LMRs Atomics International (Rocketdyne) Participation in LMR Programs


The History of U.S. Liquid Metal Reactor LMR Programs

Heritage in LMRs Sodium Reactor Experiment (SRE) 1957

- Reactor designer: Atomics International
- First reactor in the world providing power to commercial grid-Moorpark (Nov. 1957, Santa Susana, Ca)
- Power: 20 MWth / 6 MWe
- Outlet temperature: 789 K
- Fuel: Unalloyed uranium metal fuel thermally bonded by NaK to 304 SS tubes
- Coolant: Sodium (Na)
- Moderator: Graphite
- Control rods: Boron-nickel
- Purpose:
 - Prototypic of power reactors
 - Reactor safety
 - Statistically significant data collection for study of fuel irradiation
 - Determine static and kinetic neutron behavior
 - Development and testing of sodium system components
 - Demonstration of maintenance and operability

SODIUM REACTOR EXPERIMENT

SRE demonstrated the feasibility of the sodium-cooled, graphite-moderated reactor. On November 12, 1957 the first electric power for commercial use from a nuclear power plant was generated to light the City of Moorpark.

> Designated as a Nuclear Historic Landmark Nov. 13, 1985 by the American Nuclear Society

Atomics International designed and built the first reactor that provided commercial power to a grid

Heritage in LMRs

• Hallam Power Plant (1962)

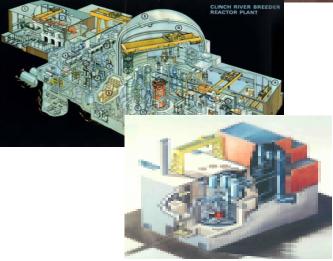
- Critical with sodium, August 25, 1962, Hallam Nebraska
- Power: 241 MWt / 82 MWe
- An improved version of the SRE
- Role: Reactor designer

• Fast Flux Test Facility (FFTF) 1970s-1980s

- 400 MWt technology test bed, Richland Washington
- Role: Fuel handling systems EM pump Decay heat removal

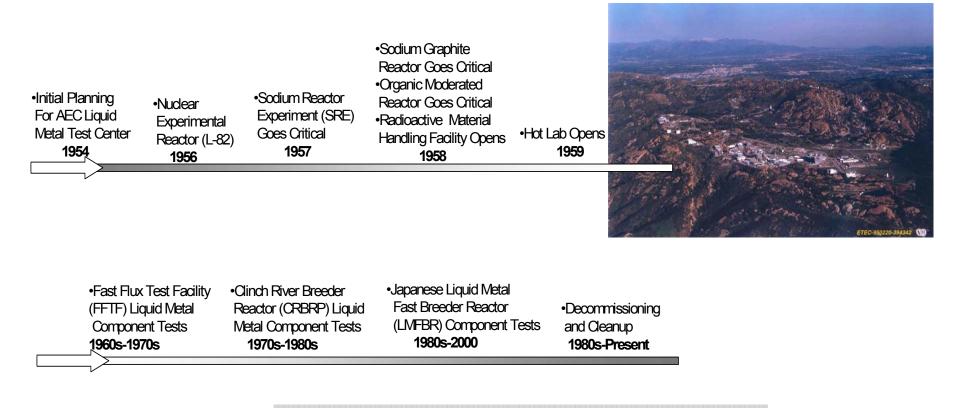
Clinch River Breeder Reactor (CRBR) 1972-1982

- 1st commercial LMR, 375 MWe, Not completed, Tennessee
- Role: Steam generator


Emergency cooling system Purification & inert gas systems

• Sodium Advanced Fast Reactor (SAFR) 1984-1988

- 350 MWe plant designed for inherent safety & low cost
- Role: Prime contractor
 NRC one step license applicant



Heritage in LMRs Santa Susana Field Lab Liquid Metal/Nuclear Achievements

Liquid metal reactors were developed rapidly at SSFL

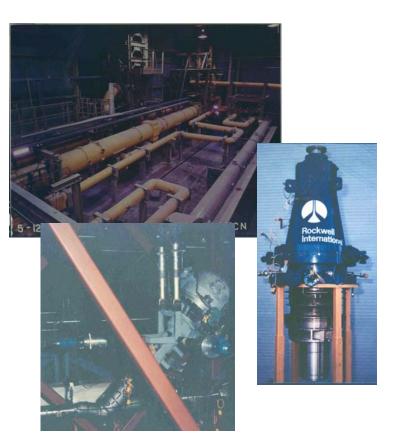
Pratt & Whitney A United Technologies Company

ETEC History of testing

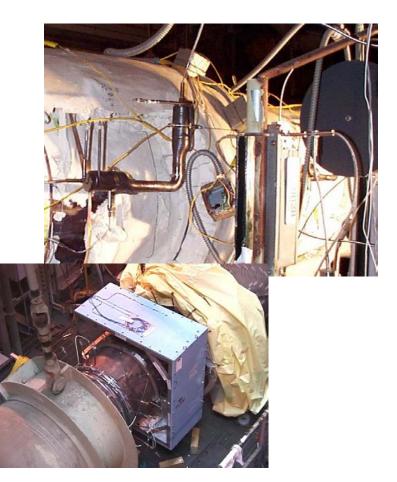
- Energy Technology Engineering Center (formerly Liquid Metals Engineering Center)
 - Operated by Rocketdyne for DOE
 - Dedicated to non-nuclear component testing
 - Steam generators
 - Pumps (Mechanical & EM)
 - Valves
 - Instrumentation
 - Operating procedures
 - Built & operated many Na & Li facilities
 - Up to 950K & 500M³/min.
 - Over 500,000 hours of operation

Pratt & Whitney A United Technologies Company

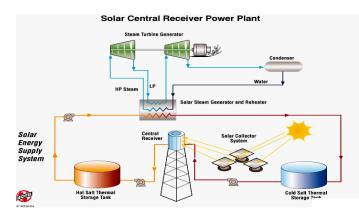
- Sodium-water reaction tests, due to hypothetical steam generator tube ruptures
 - Large Leak Test Rig (LLTR)
 - Test to: 900 deg F, 3.5K psig, 800 gallon capacity
- Small special purpose systems
 - Liquid Metal Development Laboratories (LMDL-1,-2)
 - Used for bellows, friction and wear of materials, electric trace heater life, instrumentation, natural circulation
- Gas blow down & seismic test facility
 - Thermal Transient Test Facility (TTF)
 - Material & structural testing: creep ratcheting, thermal/mechanical life cycles, thermal transients, seismic events
 - Gas testing applicable to GCR also



- Largest facility in the world for testing SG (70 MWt)
 - Steam Generator test Facility (SGTF)
 - Complete Cogeneration Power Plant: 27 MWe
 - 3 SG test stands
 - Testing to: 3 million lb/hr, 3,000 psig feed water, 950F
- Largest sodium pump facility in the world
 - Sodium Pump Test Facility (SPTF)
 - Up to 36 in diam. Piping
 - Testing to: 100K gpm, 1100F, 250 psig, thermal transients
 - Completed last facility modifications in 2000
 - Large electromagnetic pump tested in 2001


- Small Components Test Loop (SCTL)
 - Testing sodium components (instrumentation, pumps, valves, cold traps, piping and vessels)
 - Testing to: 3,500 gpm, 1200 deg F, 325 psig, thermal transients

Unique Instrumentation Specification & Development Was Performed


- Unique instrumentation
 - High temperature environment
 - Unique LM electromagnetic properties
- Pressure transducers with NaK capillary standoff
- Flowmeters (Electromagnetic of several types & venturi)
- Level sensors
- Proximity sensors (mechanical device diagnostics)
- Impurity monitors

Solar Power Towers

Ready for Commercial Market Entry, Rocketdyne has the key technology

- 10 MWe
- 42 MWt
- 3 hours storage
- Molten salt technology successfully demonstrated in Solar 2
- Key attributes ...
 - High temperature high solar-to-electricity efficiency
 - Thermal storage dispatchable power with up to 24
 hr/day capability
 - Flexibility in plant size & configuration tailor to market conditions & customer needs
- Rocketdyne technology
 - Only fabricator of high temperature receiver

Molten Salt Experience

- Molten salts
 - Nitrate salts for heat transfer applications
 - Carbonate salts for oxidation and reduction reactions
 - Sulphate salt reduction for carbonate recycle
 - Chloride salts for pyrochemical partitioning
- Molten Salt Inter-Action in Coal Processing
 - Evaluated processes of carbon oxidation in molten salt
- Designed a molten salt melt station for Consolidated Edison Co.
- Molten Salt Oxidation Systems: Design, Build and Test
 - Tech support and leadership on bench and pilot scale
 - Used for destruction of propellants and other energetic wastes
- Molten Salt Materials Development
 - Evaluate and develop new materials for use in molten salt systems
- Molten Salt Test Facility (MSTF)
 - Commercial scale & permitted for testing components & processes
- Molten salt solar receiver, piping & storage tanks

Pratt & Whitney Rocketdyne

Testing must successfully meet the challenges of liquid metal & molten salt operations

Challenges High temperatures

High melting points

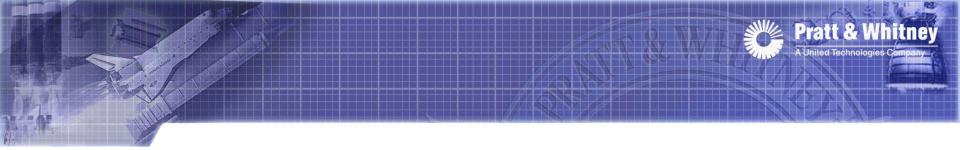
Materials compatibility

Pyrophoric behavior (flammability in air) Solutions Safe operating procedures High quality construction

Electrical system preheat Fill & melt-out procedures

Material testing Material selection Purification

Operator safety training Engineered safety features


Current Liquid Metal Capabilities

Pratt & Whitney A United Technologies Company

- Engineering capabilities
 - Over 50 engineers & techs with molten salt/liquid metal experience
 - Approximately 30+ personnel worked on Solar Two
 - Hundreds of engineering personnel with directly applicable expertise in thermal/fluids, materials, mechanical design, electronics, stress, civil, etc
 - System design and construction
 - Familiarity with different fluids (Na, Li, NaK, K, Hg)
 - High quality design and construction focused on safety
 - Pump design
 - Trace heat system design
 - Instrumentation specification and development
 - Materials specification
- Operations & testing
 - Recent large scale experience
 - Purification
 - Liquid metal & molten salt safety
 - Liquid metal & molten salt system transfer and fill

Policies, procedures and people to handle applicable liquid metals

Back up

Component Design and Testing

 Pratt & Whitney

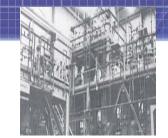
 A United Technologies Company

- Salt, steam and sodium solar receivers (1)(3)
- Large commercial size liquid metal pumps (2)(3)
- Molten salt and liquid metal tanks and vessels (2)(3)
- Electrical heat trace and insulation systems (2)(3)
- Large commercial size liquid metal steam generators(2)(3)
- Liquid to liquid and liquid to air heat exchangers (2)(3)
- Salt and liquid metal instrumentation (2)
- Salt and liquid metal piping systems (2)(3)
- Liquid metal cold traps and freeze seals (2)(3)
- (1) Designed at Rocketdyne and tested elsewhere
 - (2) Designed and tested at Rocketdyne
 - (3) Fabricated by Rocketdyne

Technical Capabilities Required for Test Facility Design

- High temperature thermal fluid analysis
- High heat flux component mechanical design
- High temperature stress analysis
- Materials engineering
- Molten salt & liquid metal science and chemical engineering
- Instrumentation and control
- High temperature piping design and analysis
- Electrical heat trace and insulation design
- Valve engineering

Small Components Test Loop (SCTL)


> •l&C Pumps Valves

- Cold traps
- •Others.

Large Leak Test Rig (LLTR)

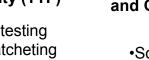
 Study Na/H2O energetic reactions

Liquid Metal **Development Labs** (LMDL)

> Bellows Friction/wear •Trace heater •l&C

Sodium Component Test Installation (SCTI)

•Largest liquid metal steam generator facility in the world-70 MWt


Vibration Facility

- •Components
- •Structure
- 40g acceleration
- •100 ton max

Thermal Transient **Test Facility (TTF)**

- Material testing Creep ratcheting •Thermal/mech life
- Thermal striping

- (CHCF) Sodium removal from large
- Alcohol and steam processes

Sodium Pump Test Facility (SPTF)

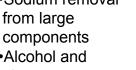
 Largest Na pump facility in world •36 in. diam pipe •100,000 gpm

•1100 deg F •250 psig

Bimetallic Lithium Pumped Loop (BLiP)

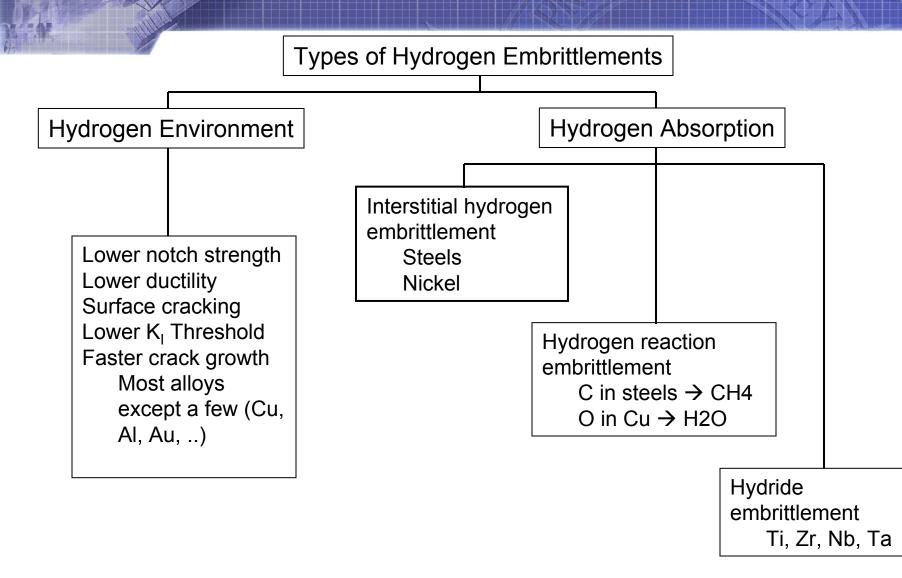
 Corrosion of metals in Li within a bimetallic loop

Purification techniques

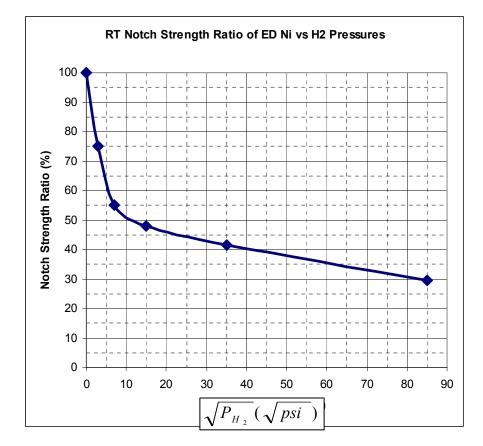


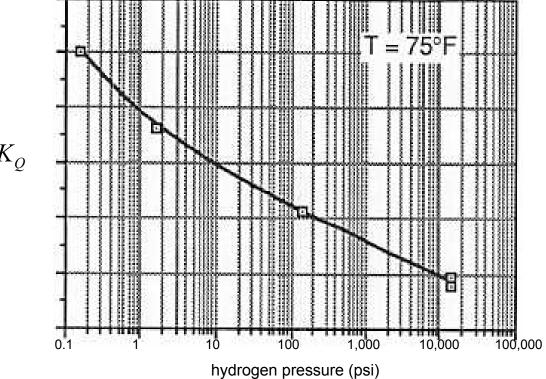
Radioactive Material Disposal Facility (RMDF)

 Radioactive waste Mixed waste treatment


Pratt & Whitney Rocketdyne Page 20

Component Handling and Cleaning Facility


Interactions of Hydrogen and Materials


Notch Strength Degraded by Presence of Hydrogen

Subcritical Crack Growth Threshold (Normalized) for Ti-6-4 as

 K_{scg}/K_Q

For over 45 Years, Rocketdyne's Understanding of Hydrogen Effects on Materials Has been the Key to Space Efforts

		A
1956-1960s	Nuclear rocket – MK9 turbopump	
1960-1970	H ₂ -fueled J-2 engine carried astronauts to the moon	
1961-1973	NASA-funded tech- nology contracts in hydrogen effects	Recent Control
1964-1965	Aerojet and NASA H ₂ tank failures focus attention on hydrogen embrittlement	
1965-1970	H2 turbopump testing	A. Bas
1969-20??	Reusable Space Shuttle Main Engine design, test, analysis, flight support	
1989-20??	Higher temperature, longer life systems	

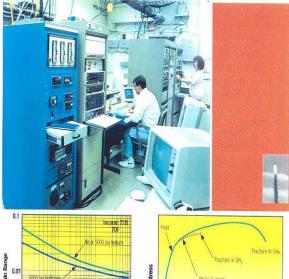
Pratt & Whitney Rocketdyne Page 24

Unprecedented Capability and Experimental Aurited Technologies Company als under Hydrogen

Rocketdyne's experience in understanding hydrogen effects is unequalled

Hydrogen envinronment embrittlement characteristics:

- Lower ductility
- Lower notch strength
- · Higher crack growth rate


Crack propagation at low stress

Statta Ballan

HILL CHENCON PATHO

Surface cracking

Environmental Effects Laboratory High-**Pressure Hydrogen Test Capabilities** Facility hydrogen system AL MARKEN CALLERON Pressurization Mechanical testing capability Tensile • Creep · High-cycle fatigue Low-cvcle fatigue Fracture mechanics **Component Test** Elevated temperature Cryogenic temperature SSME bellows

4 RT

Purification system system (30,000 psi) Purity monitoring Trace impurity test

- NASP heat exchanger
- NASP sliding seals
- SSME drain line flow