

June 02, 2009

Ewelina Mutkowska OTIE 317 East Main Street Ventura, CA 93001-2624

Subject: **Calscience Work Order No.:** 09-05-2222

> Client Reference: Former Raytheon Site, Canaga Park / 2009025

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/26/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Virendra Patel

Project Manager

Case Narrative for 09-05-2222

Sample Condition on Receipt

Fifteen (15) samples were received as part of this Work Order on May 26, 2009. All samples were transferred to the laboratory in an ice-chest following strict chain-of-custody procedures. The temperature (4.5 °C) of the samples was measured upon arrival in the laboratory and was within acceptable limits. The samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers, and stored in refrigeration units pending analysis.

Data Summary

The samples included in this report were analyzed in accordance with the attached chain-of custody records.

Holding Times

All holding time requirements were met.

Calibration

Frequency and control criteria for initial and continuing calibration verifications were met.

Blanks

The method blank data showed non-detectable levels for Solids, Total Dissolved.

Sample Duplicate

A sample duplicate has been provided as part of the QC deliverables package. The RPD on the duplicate sample was within acceptable limits.

Matrix Spikes

Matrix Spikes (MS) and Matrix Spike Duplicates (MSD) analyses are not performed for this method.

Laboratory Control Samples

The Laboratory Control Sample (LCS) and LCS Duplicate analyses are not performed for this method.

<u>Surrogates</u>

Surrogate recoveries are not performed for this method.

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. Sample Summary Report

WORK ORDER #:

09-05-2222

QAPP:

0130

	Client Sample ID	Matrix	Date Collected	NoC	Comment
	CP-0905015	W	05/26/2009	1	
	CP-0905016	W	05/26/2009	1	
	CP-0905019	W	05/26/2009	1	
	CP-0905020	W	05/26/2009	1	
5	CP-0905025	W	05/26/2009	1	
	CP-0905026	W	05/26/2009	1	
-	CP-0905007	W	05/26/2009	11:	
5	CP-0905008	W	05/26/2009	1	
9	CP-0905003	W	05/26/2009	1	
0	CP-0905004	W.	05/26/2009	. 1	
1	CP-0905009	W.	05/26/2009	1	
2	CP-0905010	W	05/26/2009	1	
3	CP-0905011	W	05/26/2009	1	
4	CP-0905012	W	05/26/2009	1	
5	CP-0905027	W	05/26/2009	1	

alscience Environmental WORK ORDER #: 09-05- Page 40 13

Laboratories, Inc. SAMPLE RECEIPT FORM Cooler __f of ____

TEMPERATURE: (Criteria: 0.0 °C = 6.0 °C, not frozen) Temperature	urier.	□ Sample	
CUSTODY SEALS INTACT: Cooler	□ N/A	Initial Initial	7.11
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	K		
COC document(s) received complete	Ø		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
□ COC not relinquished. □ No date relinquished. □ No time relinquished.	12		
Sampler's name indicated on COC	×		
Sample container label(s) consistent with COC	A.		
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested			
Analyses received within holding time	1		
Proper preservation noted on COC or sample container	×		D
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			F
Tedlar bag(s) free of condensation			7
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □	TerraCore	s* 🗆	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □	J1AGBna ₂ [1AGBs
	Minn r	1500PB 🗆 56	00PBna
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	CIPO L		
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □250PB □250PBn □125PB □125PBznna □100PB □100PBna₂ □			

DS/G1/07 Revisio

γĻ p CHAIN OF CUSTODY RECORD 28:F ci (204 62 WS) × 63 200902 HEAT BURNE 0 5-2 COOKER RECEPT Use use overy ADDITION WE SEE TO SEE 60/98/5 5/26/09 REQUESTED ANALYSES DAVE THIS ACT THIS OF ZIE 6 P.O. NO. TEMPS DU25/900/09/ 98999 221 SUBSTITUTE PROPERTY CONSTRUCTION CONSTRUCTION PNAS (8310) or (8210C) 000111000000 PCBs (8082) ž Date (V1900) Septemb SNOCE (BELIEC) (2000) days aucourg guidauren istaoai Z JOHNSON ADC# (stepse) EWELINA SAMPLEPLES (PRINCE) to jacadaj aartwilikisha Hell Secured by Capacian Plants 808 SPHIS WICE-COST WICE-CARD Calscience Environmental Laboratories, Inc. # Darka Packages on Samples (CP. 0905 oot ? 2 OTR-TNSA Species Sp. 200 5063 Commercial Crots, Bulls H general Secalived by: (MATRIC 100 Consort, CA, IM520-8677 (925) 489-9022 NorCal Service Center 11:45 90:21 9:45 00:01 00:1 8:45 9:30 10:15 11:15 B Ä SAMPLING ba SZSTANDARD Shillof 9 · Level III Date MacKages on Samples. PIBLD PORT NAME (FOR CORLY EDF) 72.48 Store SPECIAL REQUIREMENTS (ADDITIONAL COSTS SAY APPLY) COELT EDF Carden Grove, CA 92841-1427 BENT-3170 317 E. Main 48 HR S MAA. 7440 Lincoln Way SoCal Laboratory (714) 895-5494 PRINCE REPORTING FORMS CP-0905015 24 HR CP-0905016 CP-0905025 G-0905026 CF-0905019 CP-0905020 CP-0905004 CP-0705007 C1-0105003 CP-0905008 SAMPLEID DN 585-1110 Refrequence by: (Signature) Reinquished by (Signature) Ventura SPECIAL REPRESENTANT LABORATORY CLIENT TURRAMOUND TIME SAME DAY in Land 388 ż ¢. 5

CRETRIBUTION: Withle with final report, Green and Yelice to Client.
Please note that pages 1 and 2 of 2 of our TiCs are printed on the severe side of the Green and Yelice copies respectively.

7 p CHAIN OF CUSTODY RECORD DSIGLICO Revision 457 204 52 WS) SQL N 200902 ALPH (C) LID-29-Ч 2 - E COCCURRENCES VOCs (TD-144) & (TO-15) 5-26-09 LAB USE ONLY 60/90/5 Date 5/26/09 REQUESTED ANALYSES DANK WIND WITH WARRY (MICE) TEMPS X151/B0109) WWW 221 HAVE (8040) IN (85/00) SOULT LOG CODE PCBL (8082) 700 (VLGCG) HIDDISHALL (00/29) *00/s Dark (Stock) darril ancord CLENT PROJECT SAME / NUMBER ž BOB TOWNSOM Chyperates (S2508) Ś Canoga ACCP (BS808) Eweling BTEX. MTBE (S2008) or HALL Received by (Signahare/Affiliation) Received by (Signature/Affiliation Received by (Department Con-TPH (6) or (CS-CSE) or (CS-CSE) Dann (D) Hd1 Calscience Environmental Laboratories, Inc. ACTIVITY SPEATE SUB 200 CR-09 15002) 5063 Convences Circle, Suits H Daltalackage on (CR-0005001 9300 ş MACRICA Concard, CA 94525-6577 (925) 689-9022 NorCal Service Center 14:45 13.43 300 State 15: 15 SIN 14:00 Dulty ProKays on all Samples Ä SAMPLING SPANDAND 5/26/00 SHALL 5/11/04 DATE STATE CA PELD FORM WARE (FOR CORLT EDF) 72 HR SPECIAL PEDLINENTS (ADDITIONAL COSTS MAY APPLY) COBLY EDF C. Main St AP NT - 3170 Garden Gross, CA 92841-1427 48 HR E-MAG. 7440 Lincoln Way Socal Laboratory 714) 895-5494 210 5 0 6 0 - 07 0105060 CP-0405009 CP-0905011 RWQCII REPORTING FORMS 205-585-2110 野大田 0 SAMPLE ID denominal by (Signature) x Level IF Seinguished by (Signature) Reinquished by (Signature) A Level # CP-09 05 PRICIAL RETRUCTIONS Ventura ABONDONY CLEM 410 SAME DAY 358 d

DISTRIBUTION: Withte with final report, Green and Yalose to Client.
Please note that pages 1 and 2 of 2 of our TICs are printed on the reverse side of the Green and Yelour copies respectively.

 OTIE
 Date Received:
 05/26/09

 317 East Main Street
 Work Order No:
 09-05-2222

 Ventura, CA 93001-2624
 Preparation:
 N/A

 Method:
 SM 2540 C

Project: Former Raytheon Site, Canaga Park / 2009025

Page 1 of 3

Project. Former Nayti	icui Sile, Cai	iaya Faik	1 20090	23					age 1 01 5
Client Sample Number		Lab Sa Numl		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-0905015		09-05	-2222-1-A	05/26/09 08:30	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	re qualified wit	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	3390	10	1.0	1			mg/L		
CP-0905016		09-05	-2222-2-A	05/26/09 08:45	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	re qualified with	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	3440	10	1.0	1			mg/L		
CP-0905019		09-05	-2222-3-A	05/26/09 09:30	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	re qualified wit	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	2730	10	1.0	1			mg/L		
CP-0905020		09-05	-2222-4-A	05/26/09 09:45	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, a	re qualified with	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2760	10	1.0	1			mg/L		
CP-0905025		09-05	-2222-5-A	05/26/09 10:00	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	re qualified wit	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	2680	10	1.0	1			mg/L		
CP-0905026		09-05	-2222-6-A	05/26/09 10:15	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	re qualified with	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	2720	10	1.0	1			mg/L		

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

 OTIE
 Date Received:
 05/26/09

 317 East Main Street
 Work Order No:
 09-05-2222

 Ventura, CA 93001-2624
 Preparation:
 N/A

 Method:
 SM 2540 C

Project: Former Raytheon Site, Canaga Park / 2009025

Page 2 of 3

Project: Former Raytr	neon Site, Car	naga Park	/ 200902	25					Page 2 of
Client Sample Number		Lab Sai Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-0905007		09-05-	-2222-7-A	05/26/09 11:00	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSB
Comment(s): -Results were ev	valuated to the MDL	, concentration	s >= to the I	MDL but < R	L, if found, ar	e qualified wit	n a "J" flag.		
<u>'arameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
solids, Total Dissolved	2420	10	1.0	1			mg/L		
CP-0905008		09-05-	-2222-8-A	05/26/09 11:15	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSE
Comment(s): -Results were ev	valuated to the MDL	., concentration	s >= to the N	MDL but < R	L, if found, ar	e qualified wit	n a "J" flag.		
<u>arameter</u>	Result	<u>RL</u>	<u>MDL</u>	•	<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	2350	10	1.0	1			mg/L		
CP-0905003		09-05-	-2222-9-A	05/26/09 11:45	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSE
Comment(s): -Results were ev	valuated to the MDL	., concentration	s >= to the l	MDL but < R	L, if found, ar	e qualified with	n a "J" flag.		
<u>arameter</u>	Result	RL	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1640	10	1.0	1			mg/L		
CP-0905004		09-05-	-2222-10-A	05/26/09 12:06	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSE
Comment(s): -Results were ev	valuated to the MDL	., concentration	s >= to the N	MDL but < R	L, if found, ar	e qualified wit	n a "J" flag.		
<u>arameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1690	10	1.0	1			mg/L		
CP-0905009		09-05-	-2222-11-A	05/26/09 13:45	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSE
Comment(s): -Results were ev	valuated to the MDL	, concentration	s >= to the I	MDL but < R	L, if found, ar	e qualified wit	n a "J" flag.		
<u>arameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2910	10	1.0	1			mg/L		
CP-0905010		09-05-	-2222-12-A	05/26/09 14:00	Aqueous	N/A	05/29/09	05/29/09 19:30	90529TDSE
Comment(s): -Results were ev	valuated to the MDL	, concentration	s >= to the N	MDL but < R	L, if found, ar	e qualified wit	n a "J" flag.		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2050	10	1.0	1			mg/L		

 OTIE
 Date Received:
 05/26/09

 317 East Main Street
 Work Order No:
 09-05-2222

 Ventura, CA 93001-2624
 Preparation:
 N/A

 Method:
 SM 2540 C

Project: Former Raytheon Site, Canaga Park / 2009025

Page 3 of 3

CP-0905011 09-05-2222-13-A 05/26/09 14:45 Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a	Prepared Ai 05/29/09 0	ate/Time nalyzed 5/29/09 19:30	QC Batch ID 90529TDSB1
14:45 Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a	"J" flag.		90529TDSB1
	ū		
	<u>Jnits</u>		
<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qual</u> <u>U</u>			
Solids, Total Dissolved 2260 10 1.0 1	mg/L		
CP-0905012 09-05-2222-14-A 05/26/09 Aqueous N/A 05/26/09 15:00	03/23/03	5/29/09 19:30	90529TDSB1
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a	"J" flag.		
<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qual</u> <u>U</u>	<u>Jnits</u>		
Solids, Total Dissolved 2260 10 1.0 1	mg/L		
CP-0905027 09-05-2222-15-A 05/26/09 Aqueous N/A 0	03/23/03	5/29/09 19:30	90529TDSB1
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a	"J" flag.		
<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> <u>Qual</u> <u>U</u>	<u>Jnits</u>		
Solids, Total Dissolved 14 1.0 1.0 1 r	mg/L		
Method Blank 099-12-180-1,405 N/A Aqueous N/A 0	00, 20, 00	5/29/09 19:30	90529TDSB1
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a	"J" flag.		
<u>Parameter</u> <u>Result</u> <u>RL MDL</u> <u>DF Qual</u> <u>U</u>	<u>Jnits</u>		
Solids, Total Dissolved ND 1.0 1.0 1 r	mg/L		

MMMmm

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

OTIE 317 East Main Street Ventura, CA 93001-2624 Date Received: Work Order No: Preparation: Method:

05/26/09 09-05-2222 N/A SM 2540 C

Project: Former Raytheon Site, Canaga Park / 2009025

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-05-2306-1	Aqueous	N/A	05/29/09	05/29/09	90529TDSD1
					_
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Solids, Total Dissolved	795	793	0	0-20	

RPD - Relative Percent Difference , CL - Control Limit

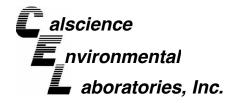
Glossary of Terms and Qualifiers

Work Order Number: 09-05-2222

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Level III Data Package

Work Order#: 09-05-2222


Client: OTIE - TN & A

Former Raytheonsite, Canaga Park / 2009025

SM 2540 C

Total Dissolved Solids

100 000	CO I Secure	Card comme of years.	A training comments	234.6 -97 07	0740	0.370	4811	4500	0.750	200	21/2	0998	2600	9.5%	87.10	79.00	7.5 20	05.57	ige 1	3 of	14:
	22.25		100	15.90	0.646	270	26 870	27.00	9.670	3342	1640	01/10	3450	2360	40.00	100.11	876	720	362	4.0	7.63
	the #0	1100	Sees Street	121111	8834.4	94.57.0	26500	445.00	4.184-1	410.65	340 44	0.000	20619	444.953	A146.	0 a a a a	0.4040	4.0 04.0	618 31A	Deres .	6.69.17
	and a		TOTAL STREET	S1+46	17.5.54	29.5547	19.73	1477.84	38.4468	8.20t7	14.7573	27.64.0	29.061	39.000	35.774	17:45.67	- 00. TH	A. 777.	29.8.84	>5.746	mr. 7564
	AA5	Ш	-	3,9,3,747	3.8 AMTS	28 5016	19,6771	28.707.7	#81K189	A8.7320	38.751	19.40	49.6487	4.59.64	35,7157	27.15.10	20.00.00	4.79.04	27.47%	25,2465	8 P. 74.47
ī	7.9/09	1 .	Dame.	0	_	Ŧ	H	H		>	300	9	0.0	0.0	20	00	-	H	ļ	9.00	Ao
ĺ	Paperston	F 0	1	7	117	9.8	27	14.9	HAS	16	Bry	4	2005	57	W.F	4	1000	4	77	4BB	4
0.149 0.490	Operated.	322	1	NA NA	П		ŀ					ļ	ŀ				ļ		>	-	44
Academ N total Occupant finish (TOR), O Total Businessasi Sumas (198)	A the page Conv. 100 y	Will - Ballet - Ca - Ca mercal		A - I - I CALLED	V-	-			-	3	0-	111	411	-01-1		V =19	3.00 - 1 - 6	1-46.5	V-1-3086 4	9	A-1-1016-2-2100

June 04, 2009

Ewelina Mutkowska OTIE 317 East Main Street Ventura, CA 93001-2624

Subject: **Calscience Work Order No.:** 09-05-2305

> Client Reference: Raytheon Canoga / 2009025

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/27/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Virendra Patel **Project Manager**

Case Narrative for 09-05-2305

Sample Condition on Receipt

Thirteen (13) aqueous samples were received as part of this Work Order on May 27, 2009. The samples were transferred to the laboratory in an ice-chest following strict chain-of-custody procedures. The temperature (2.4°C) of the samples was measured upon arrival in the laboratory and was within acceptable limits. The samples were logged into the Laboratory Information Management System (LIMS), given laboratory identification numbers, and stored in refrigeration units pending analysis.

Data Summary

The samples included in this report were analyzed in accordance with the attached chain-of-custody (COC) record.

Holding Times

All holding time requirements were met.

Calibration

Frequency and control criteria for initial and continuing calibration verifications were met.

Blanks

The method blank data showed non-detectable levels for Total Dissolved Solids.

Sample Duplicate

A sample duplicate has been provided as part of the QC deliverables package. The RPD on the duplicate sample was within acceptable limits.

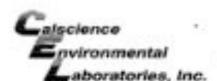
Matrix Spikes

Matrix Spikes (MS) and Matrix Spike Duplicates (MSD) were not performed for this method.

<u>Laboratory Control Samples</u>

The Laboratory Control Sample (LCS) and LCS Duplicate analyses were not performed for this method.

Surrogates


Surrogate recoveries were not performed for this method.

CALSCIENCE BRIVRONMENTAL LABORATORES, INC. Sample Summary Report

WORK DROER # 28-05-2305

QWPP: 2130

WORK ORDER #: 09-05- 2 3 6 2

Laboratories, Inc. SAMPLE RECEIPT FORM Cooler __ of ___

TEMPERATURE: (Criteria: 0.0°C - 6.0°C, not frozen) Temperature		TIE -TNSA				05127	
Cooler	Temperature Sample(s Sample(s Received s	2.6 °C s) outside temperature s) outside temperature at ambient tempera	- 0.2°C (CF) = criteria (PM/APM contact criteria but received on ic ture, placed on ice fo	ed by:). selchilled on same d r transport by Co	ay of sample	ng.	
SAMPLE CONDITION: SAMPLE CONDITION: Yes No N/A Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete. COC document(s) received complete. COC of not relinquished. No date relinquished. No time relinquished. Sample container label(s) consistent with COC. Sample container label(s) consistent with COC. Sample containers and volume for analyses requested. Analyses received within holding time. Proper preservation noted on COC or sample container. Uhpreserved viate received for Volatiles analysis Volatile analysis container(s) free of headspace. CONTAINER TYPE: Soilid: 4ozCGJ BozCGJ Teach Tea	CUSTODY S	SEALS INTACT:		/			
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete. COC document(s) received complete. COC document(s) received complete. COC document(s) received complete. COC not relinquished. No date relinquished. No time relinquished. Sampler's name indicated on COC. Sample container label(s) consistent with COC. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Analyses received within holding time. Proper preservation noted on COC or sample container. Uhpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace. Tedlar bag(s) free of condensation. CONTAINER TYPE: Solid: 4ozCGJ BozCGJ 16ozCGJ Sleeve EnCores* TerraCores* Water: VOA VOAh VOAna2 125AGB 125AGB 125AGB 1AGB 1AGB 1AGB 500AGB 500AGJ 500AGJ 250AGB 250CGB 250CGB 178 500PB 500PB 250PB 250PB 125PB 125PB 125PB 100PB 100PB 00 00PB 0	□ Cooler	0	☐ No (Not Intact)	Not Present	□ N/A	Initial	45
Chain-Of-Custody (COC) document(s) received with samples	☐ Sample	0	☐ No (Not Intact)	2 Not Present		Initial:	SH
Chain-Of-Custody (COC) document(s) received with samples	CAMBLE CO	OMDITION.					2014
COC document(s) received complete			ettel meninget with man			No	200
Collection date/time, matrix, and/or if of containers logged in based on sample labels. COC not refinquished. No date refinquished. No time refinquished. Sampler's name indicated on COC			2.775		/	0	
Sampler's name indicated on COC							D
Sampler's name indicated on COC					8		
Sample container label(s) consistent with COC					/		
Sample container(s) intact and good condition					/		
Correct containers and volume for analyses requested					-/	0	
Analyses received within holding time		나는 작용하면서 어떻게 되었다.					
Proper preservation noted on COC or sample container							
Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace							
Volatile analysis container(s) free of headspace	Proper preser	rvation noted on COC	or sample container		Ø		
Tedlar bag(s) free of condensation	☐ Unpreserv	ved vials received for V	olatiles analysis				
CONTAINER TYPE: Solid: Q40zCGJ Q80zCGJ Q160zCGJ QSleeve QEnCores* QTerraCores* Q Water: QVOA QVOAh QVOAh QVOAh QVOAh QVOAh QUOAh	Volatile analys	sis container(s) free	of headspace				Ø
Solid: □4ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores® □ Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂	Tedlar bag(s)	free of condensation	h		0		Ø.
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂	CONTAINER	R TYPE:					
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs ☑1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PB □100PBna; □ □ □ □ Air: □Tedlar® □Summa® □ Other: □ CheckediLabeled by: ☑★	Solid: □4ozt	CGJ 🗆8ozCGJ 🗀	116ozCGJ □Sleeve	□EnCores® □	TerraCore	s* D	
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs ☑1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PB □100PBna; □ □ □ □ Air: □Tedlar® □Summa® □ Other: □ CheckediLabeled by: ☑★	Water: □VO	A DVOAh DVOAm	a₂ □125AGB □125AG	GBh □125AGBp	□1AGB □	11AGBna, D	11AGBs
□250PB □250PBn □125PB □125PBznna □100PB □100PBna; □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □							
Air: DTediar® DSumma® DOther: DChecked/Labeled by: St.					П	П	
					Chacked	T wholest but	78/
The state of the s							DL

Laboratories, Inc. Hercal Service Center Control Communication Control Control Communication Control Control Control Control	Comment of the Co	CHAIN OF CUSTODY RECORD	0000	5	0 4-23 05	CER RECEIPT	TIMP	ANALYSES		(\$4.00) (\$4.00	TO SERVED	0A 0A 0D	*	~	×	×	*	X	×	×	X	×	CS 122/09 114:10	as127/09 7600
Laboratories, Inc. Horder Service Center Stock Commercial Conte. Suite H Concept CA HAZD 4677 RES, 689-902 SANDARD	### SETANDAID #### SANDAID ##################################	CHAIR	14	Langthern Canage 200900	7	(BRS); plant)	Bob Johnson DOD	EQUESTED	(H	190929 44 (2002) 49 (2002) 49 (2002) 490929 1906 (2009)	egoges cook (a descrip schools con (as con (as	ed fit and the fit											Notice Con	WATERSON!
	E E E E E E E E E E E E E E E E E E E	Laboratories, harcal Sevice Center 5003 Commercial Cocte. Sul Concord, CA 94520-8577	(825) 689-9022		da .	93001		Ketanban	TNA	797	PUNG	TME WHITE	ILHS GW	00,01	0800	5/80	00:11	11:15	6430	52460	230	1 4 A A A	Robined by (Signatur	Burnell in Supple

DISTRIBUTIONS White with final report, Green and Yallow to Client. Please note that pages 1 and 2 of 2 of our TIOs are printed on the reverse side of the Green and Yallow copies respectively

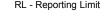
RECUEST REC	SCIENCE E Social Laboratory 7440 Lincoln Way Garden Grove, CA (714) 886-6494	Calscience Environmental Lab Socal Laboratory New Carlot	al Laboratories, Norcal Service Center Sotto Commence Circle, Sua Comment CA Settle 6577 6255 date-8022	ries, Inc.				H S	ANO S	or custon	8100	CHAIN OF CUSTODY RECORD	S
Second S	OTIS-TNKH	П			P. ALL	T NAME I NAME	1	1 2	1	P.O. N			Г
Note 1 1 1 1 1 1 1 1 1	SIJE, Marnet			200	1		計	50.0	4			M	13
Note	Same.				0	e house				TEMP	, Marie		p
C C C C C C C C C C]зыя Паня Пляя	8	Жимомир			RE	OUE	STED		LYSE	S		0
September Sept	PRINCIA REPORTING FORMS COSTS MAY APPLY PRINCIA REPORTING FORMS COSTS MAY APPLY LEVEL THE DAYA PRECENSES LEVEL THE DAYA PRECENSES LEVEL THE DAYA PRECENSES		AND SO	E ul -d	(CeC36) × (CeC46)	laor	(900g) da			(MINIMETRO)			
S-37-09 0-83-30 1	PRI CHOST MASS	1	15		no (pt)	esi +:	ug avo	_		(KIN)	_	_	_
13.15 1 2 2 2 2 2 2 2 2 2	B.) FORCORTEON	8	Н	-	441	XOA.	ng	_	0.00	221	-	_	4
13.15 1 24.00	-040509J		522708	- May	_						_	*	,
90.845	- 0405098		-	-				_	_		_	×	_
1 1 1 1 1 1 1 1 1 1	SP-6905023		-	1 / 6								X	_
Section (Separate Manager) Se	Hea2aPO		5-37-9e84					-	+			×	-
						H	Ħ	Н	H		H	H	Н
1						\parallel	ш	\Box	Н	\Box	+	\forall	+
SALANN CO. COLOR TON				->		+	\pm	+	-		+	+	+
and by Esperant Alexand Ca OS/27/64 (1		2	J	Continued (9	- 1	K	8	立立	10
eved by: (Sgrature Affliation)			- Maria	XIII	20/62		2	٦	0.5	12/2	Pod	(60	2
			Mac	ived by: (Signatur	(including the second				8			N.	

٠

DISTRIBUTION: White with final neport, Green and Yellow to Client.
Please note that pages 1 and 2 of 2 of our TICs are printed on the severne side of the Green and Yellow copies sespectively.

 OTIE
 Date Received:
 05/27/09

 317 East Main Street
 Work Order No:
 09-05-2305


 Ventura, CA 93001-2624
 Preparation:
 N/A

 Method:
 SM 2540 C

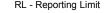
Project: Raytheon Canoga / 2009025

Page 1 of 3

Project: Raytheon Car	noga / 20090:	25						F	age 1 of 3
Client Sample Number		Lab Sa Numb	•	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-0905005		09-05-	-2305-1-A	05/27/09 11:45	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
Parameter Parameter	Result	<u>RL</u>	MDL		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	2320	10	1.0	1			mg/L		
CP-0905006		09-05-	-2305-2-A	05/27/09 12:00	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
<u>'arameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2330	10	1.0	1			mg/L		
CP-0905001		09-05-	-2305-3-A	05/27/09 08:00	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
arameter arameter	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1300	10	1.0	1			mg/L		
CP-0905002		09-05-	-2305-4-A	05/27/09 08:15	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	Qual	<u>Units</u>		
Solids, Total Dissolved	1300	10	1.0	1			mg/L		
CP-0905013		09-05-	-2305-5-A	05/27/09 11:00	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2320	10	1.0	1			mg/L		
CP-0905014		09-05-	-2305-6-A	05/27/09 11:15	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were eva	aluated to the MDL	, concentration	s >= to the	MDL but < R	L, if found, ar	e qualified wit	h a "J" flag.		
<u>'arameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2340	10	1.0	1			mg/L		

 OTIE
 Date Received:
 05/27/09

 317 East Main Street
 Work Order No:
 09-05-2305

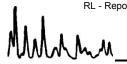

 Ventura, CA 93001-2624
 Preparation:
 N/A

 Method:
 SM 2540 C

Project: Raytheon Canoga / 2009025

Page 2 of 3

Project. Raytheon Ca	moga / 20090.	25						Г	age 2 or 3
Client Sample Number		Lab Sai Numb		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-0905017		09-05-	-2305-7-A	05/27/09 09:30	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the I	MDL but < R	L, if found, ar	e qualified witl	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1790	10	1.0	1			mg/L		
CP-0905018		09-05-	-2305-8-A	05/27/09 09:45	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the I	MDL but < R	L, if found, ar	e qualified with	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	975	1.0	1.0	1			mg/L		
CP-0905021		09-05-	-2305-9-A	05/27/09 12:30	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSE
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the f	MDL but < R	L, if found, a	e qualified witl	n a "J" flag.		
<u>Parameter</u>	Result	RL	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2350	10	1.0	1			mg/L		
CP-0905022		09-05-	·2305-10-A	05/27/09 12:45	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSE
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the I	MDL but < R	L, if found, ar	e qualified with	n a "J" flag.		
<u>Parameter</u>	Result	RL	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	2330	10	1.0	1			mg/L		
CP-0905028		09-05-	-2305-11-A	05/27/09 13:15	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the I	MDL but < R	L, if found, a	e qualified witl	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	14	1.0	1.0	1			mg/L		
CP-0905023		09-05-	-2305-12-A	05/27/09 08:30	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSE
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the I	MDL but < R	L, if found, a	e qualified witl	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1330	10	1.0	1			mg/L		



OTIE Date Received: 05/27/09 317 East Main Street Work Order No: 09-05-2305 Ventura, CA 93001-2624 Preparation: N/A Method: SM 2540 C

Project: Paytheon Canona / 2000025 Page 3 of 3

Project: Raytheon Ca	noga / 20090:	25						F	age 3 of 3
Client Sample Number		Lab Sa Numl	•	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CP-0905024		09-05	-2305-13-A	05/27/09 08:45	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB1
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the N	/IDL but < R	L, if found, a	re qualified with	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	1290	10	1.0	1			mg/L		
Method Blank		099-1	2-180-1,404	N/A	Aqueous	N/A	06/01/09	06/01/09 20:10	90601TDSB1
Comment(s): -Results were e	valuated to the MDL	., concentration	s >= to the N	/IDL but < R	L, if found, a	re qualified with	n a "J" flag.		
<u>Parameter</u>	Result	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Solids, Total Dissolved	ND	1.0	1.0	1			mg/L		

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

OTIE 317 East Main Street Ventura, CA 93001-2624 Date Received: Work Order No: Preparation: Method:

05/27/09 09-05-2305 N/A SM 2540 C

Project: Raytheon Canoga / 2009025

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
09-06-0005-1	Aqueous	N/A	06/01/09	06/01/09	90601TDSD1
					_
<u>Parameter</u>	Sample Conc	DUP Conc	RPD	RPD CL	<u>Qualifiers</u>
Solids, Total Dissolved	1010	1010	0	0-20	

Glossary of Terms and Qualifiers

Work Order Number: 09-05-2305

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Level III Data Package

Work Order#: 09-05-2305

Client: OTIE - TN & A

Raytheon Canogs / 2009025

SM 2540 C

Total Dissolved Solids

400 000		William Annual Communication of the Communication o	19.00 20.00	Page 13 of 13
	The state of	and town	125	t-a
	100	100	42 3099999	977
	50 / TO		2000 2000 2000 2000 2000 2000 2000 200	10.00
	Mary Oct.		0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200	2000
Logbook			25,000 25	25 CS
avimetri	转		では、 では、 では、 では、 では、 では、 では、 では、	14. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17
5	State?	0.18	11 2 C4 9	2 2
0.000	Proposition Analysis	8 0	11日本の日本の日本の日本日本	-0 - -
O feet factors	Agenting	1816	# 55	46.44
Analysis, 3 (*1909-1944-1941 Samuel (*1916-19-*1944 Samuel Samuel Samuel (*1986)	Assessment Greenway	Same of colomic Coll	2000 200 200 200 200 200 200 200 200 20	Opposite of the Contract of the

June 30, 2009

Ms. Ewelina Mutkowska OTIE-TN&A 317 E. Main St. Ventura, CA 93001

Dear Ms. Mutkowska:

On May 27, 2009, 15 water samples were received for analysis at the GPL Laboratories Alabama, LLC. The samples were assigned Laboratory Report Identification Code 9067_9115. Enclosed is the Sample Data Package containing the radioanalytical results of the sample.

If you have any questions please do not hesitate to call.

Sincerely,

Richard Turner Laboratory Director

COVER PAGE

GPL Laboratories Alabama, LLC 1000 Monticello Court Montgomery, Alabama 36117

NELAC Certification ID: NLC080001 (AL001)

Laboratory Report Identification Code: 9067

Sample Matrix: Water

Site Sample Number	Laboratory Sample Number
CP-0905019	OTI09-9067-01 OTI09-9085-01
CP-0905016	OTI09-9067-02 OTI09-9085-02
CP-0905019	OTI09-9067-03 OTI09-9085-03
CP-0905020	OTI09-9067-04 OTI-09-9085-04
CP-0905025	OTI09-9067-05 OTI09-9085-05
CP-0905026	OTI09-9067-06 OTI09-9085-06
CP-0905007	OTE09-9067-07 OTE09-9085-07
CP-0905008	OTI09-9067-08 OTI09-9085-08
CP-0905003	OTI09-9067-09 OTI09-9085-09
CP-0905004	OTI09-9067-10 OTI09-9085-10
CP-0905009	OTI09-9067-11 OTI09-9085-11 OTI09-9115-01
CP-0905010	OTI09-9067-12 OTI09-9085-12 OTI09-9115-02
CP-0905011	OT309-9067-13 OT309-9085-13
CP-0905012	OTI09-9067-14 OTI09-9085-14
CP-0905027	OT109-9067-15 OT109-9085-15

COVER PAGE(continued)

GPL Laboratories Alabama, LLC 1000 Monticello Court Montgomery, Alabama 36117

NELAC Certification ID: NLC080001 (AL001)

Laboratory Report Identification Code: 9067_9115

Comments: There were no problems encountered during sample receiving.

"I certify that this sample data package is in compliance with contract requirements, both technically and for completeness. Release of the data contained in this hard-copy sample data package has been authorized by the Laboratory Director or the Laboratory Director designee, as verified by the following signature."

Signature

Richard Turner
Name

Laboratory Director
Title

06/30/2009

Date

CASE NARRATIVE

Laboratory Report Identification Number: 9067_9115

NELAC Certification ID: NLC080001 (AL001)

June 30, 2009

I. Introduction

On May 27, 2009, 15 water samples were received for analysis at the GPL Laboratories Alabama, LLC located in Montgomery, Alabama. The samples were analyzed in accordance with the GPL Laboratory Quality Assurance Plan.

The data in this report meets all NELAC requirements unless otherwise stated.

II. Analytical Methodology

The radioanalytical results reported for the sample include the site and laboratory sample identification numbers, collection date, method of analysis, and the quality control samples that were analyzed concurrently. The samples were analyzed by the following methods.

Radionuclide	Method Number	Method Name	Counting Method
Co-Precipitation	SM711C	Geosa Alpha Radioactivity	Gas Proportional Counting
Gross Alpha (U)	EPA 900.0	Gross Alpha Radioactivity	Gas Proportional Counting
Gross Beta	EPA 900.0	Gross Beta Radioactivity	Gas Proportional Counting
Ra-226	EPA 903.1	Radium-226 Radon Besaustion Technique	Radon Flasio'Scale
Ra-228	EPA 904.0	Radium-228	Gas Proportional Counting
Uraenium	ACW03	Extraction Chromatography	Alpha Spectrometry

III. Analytical Results

Deficiencies

See "Re-analysis" section.

Matrix Interferences

There were no indications of matrix interference.

Detection Limits

The required detection limits (RDLs) were met for all sample analyses.

Re-analysis

Samples OTI09-9067-11 and OTI09-9067-12 exhibited low tracer recovery due to method error during chemistry process. The samples were reanalyzed as OTI09-9115-01 and OTI09-9115-02 with new QC. The re-analyses produced acceptable results and are reported in this document.

Upon further review of the package, the gross alpha detection limits were not met for some of the samples. Those samples were recounted at longer times to achieve detection limits.

Deviations from Protocols

There were no deviations from the written protocols and analytical methods.

Contacts with the Technical Representative

There was no contact with the Technical Representative regarding these samples.

IV. Quality Control

The analytical results of all quality control samples met the acceptance criteria specified in the GPL Laboratory Quality Assurance Plan.

Radioanalytical Results

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TN&A Chain-of-Custody Number: Matrix: Water

Site Sample ID: CP-0905015

Other Sample ID: Collection Date: 5/25/2009 8:20:00 AM Date Received: 5/27/2009 11:10:00

Batch Number: 9057 Laboratory Code: SCA

Method Number EPA 900.0	Badionucide BETA	Laboratory Sample ID OT108-806T-01C	Analysis Date/Time_ 06/26/09 16:03	Activity (pCi/L) -4.16	2 or Counting Error (pC/L) 1.86	Total Error (pG/L) 2.24	MDA (pCVL) 2.77
ACW03	U-233/234	OT109-9067-01	06/24/09 16:57	35.4	4.12	8.19	0.087
ACW03	U-236	OT109-9067-01	06/24/09 16:57	1.59	0.526	0.710	0.108
ACW03	U-238	OT109-9067-01	06/24/09 16:57	37.6	4.33	8.87	0.153
EPA 903.1	RA-226	OT109-8067-01	08/03/09 13:37	0.083	0.284	0.295	0.488
EPA 904.0	RA-228	OT09-8067-01	06/02/09 16:11	0.517	0.406	0.434	0.619

S. D. Carretta	retown insorrem	Quality Centrel Sar	mples	
Radionuolde	Leboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Beta	SCADC-9067-LC18	SCAQC-9067-LD1		SCAQC-9067-PB1B
Ra	SCAQC-9067-LC1	SCAQC-9067-LD1	SCAQC-906T-MS1	8CAQC-8067-P8
ti i	9CAQC-9067-LC1	SCAQC-906T-LD1		8CAQC-9067-P81

Radioanalytical Results

Report Identification Number: \$9057_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905016

Other Sample ID:

Collection Date: 5/25/2009 8:45:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9057

Laboratory Code: SCA

Method Number	Sadonucida	Laboratory Sample ID	Analysis Date/Time	Acevity (pC/L)	2 o Counting Error (pC/A.)	Total Error (pClfL)	MDA (pC(L)
EPA 900.0	BETA	OT109-9067-028	06/25/09 17:00	30.5	3.71	9.66	4.40
ACW03	U-233/234	OT109-9067-02	06/24/09 16:57	36.0	4.16	8.32	0.201
ACW03	U-235	OT109-9067-02	06/24/09 16:57	1.93	0.662	0.820	0.106
ACW03	U-238	QTI09-9067-02	06/24/09 16:57	36.4	4.20	6.41	0.086
EPA 903.1	RA-226	OT109-9067-02	06/03/09 13:37	0.209	0.279	0.286	0.461
EPA 904.0	RA-228	OT109-9067-02	06/02/09 16:13	0.105	0.368	0.362	0.618

		Quality Control Sa	mples	
Radionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Scrike (MS)	Preparation Stank (PS)
Beta	SCAQC-9067-LC18	SCACC-9067-LD1		SCAQC-9067-P818
Ra	SCAQC-9067-LC1	SCAQC-9067-LD1	SCAGC-806T-MIST	SCAQC-9067-P9
U	SCAGC-9067-LC1	SCAQC-9067-LD1		90AQC-9067-PB1

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Metric Water

Other Sample ID:

Site Sample ID: CP-0905019

Collection Date: 5/25/2009 9:30:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9057

Laboratory Code: SCA

Method Number	Radionución	Laboratory Sample ID	Analysis Date/Time	Activity (BCIA)	2 a Counting Error (pC/L)	Total Error (pClfL)	MDA _(pQ/L)
EPA 900.0	BETA	OT109-9067-038	08/25/09 17:01	18.5	2.00	5.91	2.31
ACW03	U-233/234	OT109-9067-03	06/24/09 16:57	12.2	1.91	3.11	0.106
ACW03	U-235	OT109-9067-03	08/24/09 16:57	0.481	0.309	0.341	0.130
ACW03	U-238	DT109-9067-03	05/24/09 16:57	11.7	1.85	2.99	0.105
EPA 903.1	PA-226	OT109-9067-03	06/03/09 15:05	1.27	0.394	0.548	0.535
EPA 904.0	FA-228	OT109-9067-03	06/02/09 16:14	0.633	0.449	0.488	0.675

Quality Control Samples						
Badionucide	Laboratory, Control, S.C1	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation, Blank (PS)		
Beta	SCAQC-8087-LC18	SCAQC-9067-LD1		SCAQC-9067-PB1B		
Ra	SCAQC-9067-LC1	SCAGC-9067-LD1	SCAGC-9067-MS1	SCAQC-906T-PB		
U	SCAQC-8067-LC1	SCAQC-9067-LD1		8CAQC-9067-P91		

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TN&A Chain-of-Custody Number: Matrix: Water

Site Sample ID: CP-0905020

Other Sample ID: Collection Date: \$25/2009 9:45:00 AM Date Received: \$27/2009 11:15:00

Batch Number: 9057 Laboratory Code: SCA

Method Number	Radionucide	Laboratory Sample ID	Analysis Deta/Time	Activity (BCIL)	2 a Counting Error (pCVL)	Total Error (pCit)	MOA. _(bQ/L)
EPA 900.0	BETA	OT109-9067-04B	06/25/08 17:01	11.0	2.30	4.02	3.09
ACVV03	U-233/234	OT109-9067-04	08/24/09 16:57	12.0	1.40	2.76	0.068
ACWG9	U-235	OT109-9067-04	08/24/09 16:57	0.584	0.254	0.308	0.072
ACWG0	U-238	OT109-9057-04	05/24/09 16:57	12.4	1.43	2.86	0.103
EPA 903.1	RA-226	OTI09-9067-04	06/03/08 15:05	0.414	0.293	0.318	0.455
EPA 904.0	RA-228	OTIO9-9067-04	06/02/09 16:14	0.567	0.407	0.441	0.600

	A - A - C - C - C - C - C - C - C - C -	Quality Control Say	mptes	
Radionudide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Stank (PS)
Beta	SCAQC-9067-LC1B	9CAQC-9067-LD1		SCAGC-9067-PB1B
Ra	SCAQC-9067-LC1	SGAQC-9067-LD1	8CAQC-9067-M81	8CAQC-9067-P9
U	SCAQC-9067-LC1	SCAQC-9067-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: 59067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: 350dec

Other Sample ID:

Site Sample ID: CF-0905025

Collection Date: 5/25/2009 10:00:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9057

Method Number	Radionucide	Laboratory Sample ID	Analysis Date/Time_	Activity (pCIS)	2 e Counting Error (pCVL)	Total Error (pG/L)	MDA (HCNL)
3PA 900.0	BETA	CTI09-9067-05B	06/26/09 13:28	22.9	3.65	7.77	2.90
ACW03	U-233/234	OT109-9067-05	06/24/09 16:58	12.0	1.52	2.83	0.069
ACIW03	U-235	OT109-9067-08	06/24/09 16:58	0.867	0.293	0.363	0.085
ACIW03	U-238	OT109-9067-05	06/24/09 16:58	11.8	1.50	2.79	0.068
EPA 903.1	RA-225	OTI09-9067-06	06/03/09 15:05	0.615	0.322	0.371	0.484
EPA 904.0	RA-228	OT109-9067-05	06/02/09 16:14	1.08	0.468	0.568	0.608

Sec. 10.	OCCUPATION AND ADDRESS.	Quality Control Sar	mples	
Radionuclide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Solke (MS)	Preparation Blank (PB)
Beta	SCAQC-9087-LC18	SCAQC-9067-LD1		SCAQC-9067-PB18
Ra	90AQC-9087-L01	SCAQC-9067-LD1	SCAQC-9067-MS1	SCAQC-9067-PB
U	SCAGC-9087-LC1	SCAQC-9087-LD1		SCAQC-9067-P91

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905026

Other Sample ID: Collection Date: 5/25/2009 10:15:00 AM Date Received: 5/27/2009 11:15:00
Batch Number: 9057 Laboratory Code: 5/25/

Method Number	Badionucida	Laboratory Sample ID	Analysis Date/Time	Activity (pCl(L)	2 er Counting Error (pC/L)	Total Error (pCVL)	MDA (s/C/L)
EPA 900.0	BETA	OT109-9067-068	06/26/09 13:28	8.32	2.65	3.64	3.04
ACW03	U-233/234	OT109-9067-06	06/24/09 16:58	12.3	1.67	2.98	0.141
ACW03	U-235	OT109-906T-08	06/24/09 18:58	0.362	0.232	0.256	0.098
ACW03	U-238	OT109-9067-06	06/24/09 19:58	11.5	1.58	2.78	0.079
EPA 903.1	RA-226	OT109-906T-06	06/03/09 15:05	0.328	0.251	0.270	0.393
EPA 904.0	RA-226	OT109-9057-06	06/02/09 16:23	-0.090	0.331	0.332	0.642

		Quality Control Sar	mples	
Badionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Black (PS)
Beta	SCAQC-9067-LC18	SCAQC-90874LD1		SCAQC-9067-PB18
Ra	SCAQC-9067-LC1	SCAQC-9087-LD1	SCAQC-906T-MS1	5CAQC-9057-PB
U	SCAQC-9067-LC1	SCAQC-9067-LD1		SCAQC-8067-P81

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: QTIE.:TNBA Chain-of-Custody Number: Matrix: Wilder
Site Sample ID: QP-0905007
Other Sample ID: Collection Date: 5/25/2009 11:00:00 AM Date Received: 5/27/2009 11:15:00

Batch Number: 9057 Laboratory Code: SCA

Badionuside	Laboratory Sample ID	Analysis Date/Time	Activity (pCifL)	2 o Counting Error (BCIA)	Tutal Error (pCl/L)	MDA (pCIA)
BETA	OT109-9067-078	05/25/09 13:28	7.22	2.51	3.31	3.03
RA-225	OT109-9087-07	06/03/09 18:12	9.61	0.734	2.98	0.346
RA-228	OTI09-9087-07	06/02/09 16:23	1.04	0.495	0.584	0.669
	BETA RA-226	Badistucilide	Badistucible Sample ID Date/Time BETA OT109-9067-079 06/03/09 18:12 RA-226 OT109-9067-07 06/03/09 18:12	RAGIONALIME Sample ID Date/Time (pC)(1)	RA-226 OTIOS-9067-07 06/03/09 18:12 9:61 0.734	RA-226 OT109-9087-07 06/03/09 18:12 9:61 0.734 2.98

1 1 1 1 1 1 1 1 1	Who conversed to No.	Quality Control Say	mples	
Bedonucide Beta	Leboratory Control (LC) SCAQC-9067-LC1B	Leberatory Duplicate (LD) SCAQC-9067-LD1	Matrix Spike (MS)	Preparation Blank (PB) SCAQC-9067-PB1B
Re	SCAQC-9067-LC1	SCAQC-9067-LD1	SCAQC-6067-MS1	SCAQC-9087-P9

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTTE - TNSA Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905008
Other Sample ID: Collection Date: 5/25/2009 11:15:00 AM Date Received: 5/27/2009 11:15:00 Matrix: SCA
Batch Number: 9057 Laboratory Code: SCA

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Activity (pCVL)	2 o Counting Error (EC/L)	Total Error (pCifL)	MDA (pC/L)
EPA 900.0	BETA	OT109-9067-088	06/26/09 13:29	7.99	2.75	3.65	3.01
EPA 903.1	RA-226	OT109-9067-08	06/03/09 16:12	9.98	0.762	3.09	0.401
EPA 904.0	RA-228	OT109-906T-08	08/03/09 13:06	0.978	0.460	0.546	0.620

New York Time United	ABOVE SECRETARION COS	Quality Control Ber	mples	
Radionucida	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Stank (PS)
Bete.	SCAQC-9097-LC18	SCAQC-9087-LD1		SCAGC-9067-PB1B
Ra	SCAQC-9067-LC1	SCAQC-9067-LD1	SCAQC-9087-MS1	SCAQC-906T-PB

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matric Yoster

Site Sample ID: <u>CP-0905003</u> Other Sample ID:

Collection Date: 5/25/2009 11:45:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9067

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Addivity _3pG(L)	2 o Counting Error (aCVL)	Total Error (pCVL)	MDA (SCIA)
EPA 900.0	BETA	OT109-906T-09B	06/26/09 13:29	3.30	1.75	2.01	2.33
EPA 903.1	RA-228	OTI09-9067-09	06/03/09 16:12	0.296	0.312	0.324	0.508
EPA 904.0	RA-228	OT109-9067-09	06/03/09 13:06	2.31	0.598	0.915	0.609

		Quality Control Sa	mpies	
Badionucide Bets	SCAQC-9067-LC18	Laboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Solve (MS)	Preparation Blank (PB) SCAQC-9087-PB18
Ra	SCAQC-9067-LC1	SCAGC-9067-LD1	SCAQC-906T-MS1	SCAQC-9067-PB

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTIE - TN&A Chain-of-Cuetody Number: Metric: Widte:

Site Sample ID: CP-0905004

Other Sample ID: Cultection Date: 5/25/2009 12:00:00 PM Date Received: 5/27/2009 11:15:00

Batch Number: 9/257 Laboratory Code: -5/25

Method Number	Badionuclida	Laboratory Sample ID	Analysis Date/Time	Addivity (s)C(L)	2 # Counting Error (pCIA)	Total Ever (pCit.)	MDA (pQ/L)
EPA 900.0	BETA	OT109-9067-10B	06/25/09 13:29	5.73	2.25	2.83	2.91
EPA 900.1	RA-226	OT109-9067-10	06/03/09 18:12	0.222	0.287	0.295	0.474
EPA 904.0	RA-228	OT109-906T-10	06/03/09 13:06	0.389	0.409	0.424	0.662

	00.0150-02170577-20	Quality Control Sar	mples	
-	Lebonstoni Control (LC)	Laboratory Duplicate (LD)	Matrix Solke (MS)	Preparation Blank (PB) SCAQC-9061-PB1B
Beta	8CAQC-8087-LC18	SCAQC-8067-LD1		
Ra	SCAQC-9087-LC1	SCAQC-9067-LD1	SCAQC-9067-MS1	SCAQC-9067-PB

Radioanalytical Results

Report Identification Number: \$9067_9115

 Project Name:
 OTIE - TNSA
 Chain-of-Custody Number:
 Matrix:
 Water:

 Site Sample ID:
 CP-0905009
 Collection Date:
 5/25/2009 1-45:00 PM
 Date Received:
 5/27/2009 11:15:30

Laboratory Code: SCA

Batch Number: 9057

Method Number	Badionucide	500,1800,04	Analysis _Date/Time_	Activity _(pCVL)	2 o Counting Error (pCi/L)	Total Error (pC/L)	MDA (BC/L)
EPA 900.0	BETA.	OTI09-9067-118	06/26/09 13:30	54.1	3.59	5.56	3.86
ACW93	U-233/234	OTI09-9087-11	05/24/09 16:55	0.000	0.000	0.090	14.3
ACW93	U-235	OT109-9067-11	06/24/09 16:58	0.000	0.000	0.135	17.7
ACW03	U-238	OT109-8067-11	062409 18:58	0.000	0.000	0.090	33.2
EPA 903.1	RA-226	OT109-9067-11	06/03/09 17:30	0.148	0.246	0.250	0.413
EPA 904.0	RA-228	OTI09-9057-11	06/03/09 12:06	0.118	0.316	0.318	0.556

		Quality Control Sa	rapies	
Badionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Metrix Spike (MS)	Preparation, Blank (PB)
Seta	SCAQC-9067-LC18	SCAGC-9067-LD1		SCAQC-6067-P918
Re	SCAQC-908T-LC1	BCAGC-9067-LD1	SCAQC-9067-MS1	SCAQC-9067-PB
U	8CAQC-9087-LC1	SCAQC-9067-LD1		SCAQC-9067-P81

Radioanalytical Results

Report Identification Number: \$9057_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Woder

Site Sample ID: CF-0905010

Other Sample ID:

Collection Date: 5/25/2009 2:00:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9067

Method Number	Badionuclida	Laboratory Sample ID	Analysis _Data/Time	Addyty _bC(L)_	2 o Counting Error (pCVL)	Total flivor _(pCifL)	_(ECVL)
EPA 900.0	BETA	OTI09-8067-128	06/26/09 13:30	11.4	2.29	4.10	2.14
ACW93	U-233/234	OT109-9067-12	09/24/09 15:58	-2.11	4.88	4.90	25.3
ACWIDS .	U-235	OT109-906T-12	06/24/09 16:58	-2.61	6.02	6.08	31.2
ACW93	U-238	OT109-906T-12	06/24/09 18:58	1.06	12.2	12.2	29.8
EPA 903.1	RA-226	OT109-9067-12	06/04/09 16:58	0.182	0.250	0.258	0.414
EPA 904.0	RA-228	OT109-9067-12	06/03/09 12:00	0.901	0.450	0.530	0.613

		Quality Control Sa	mples	
Radionuciide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Beta	SCAQC-9067-LC19	SCAQC-9087-LD1		SCAQC-9067-PB18
Ra	SCAGC-9087-LC1	SCAQC-908T-LD1	8CAQC-9067-MS1	SCAQC-9067-PB
U	SCAQC-9087-LC1	SCAGC-8067-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: 59067_9115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905011

Other Sample ID:

Collection Date: 5/25/2009 2:45:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9057

Method Number	Badonucida	Laboratory Sample ID	Analysis Date/Time	Activity (pCVL)	2 e Counting Error IpCVL1	Total Error (bCVL)	MDA (eCif.)
EPA 900.0	BETA	OTIO9-9067-138	06/26/09 13:30	6.56	3.00	3.64	3.95
EPA 903.1	RA-225	OTI09-9067-13	06/04/09 19:58	15.4	0.852	4.09	0.469
EPA 904.0	RA-228	OTI09-9067-13	06/03/09 13:07	2.03	0.560	0.831	0.617

		Quality Control Se	mples	
Radionucida Beta	SCAQC-9067-LC1B	Leboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Solke (MS)	Preparation Blank (PB) SCAQC-9067-PB18
Re	8CAQC-9067-LC1	SCAQC-9067-LD1	SCAQC-9067-MS1	SCAQC-9067-PB

Radioanalytical Results

Report Identification Number: 89087_9115

Project Name: QTE - TNSA

Chain-of-Custody Number:

Matrix: Water

5te Sample ID: CP-0905012

out out the in. Proposition

Other Sample ID:

Collection Date: 5/25/2009 3:00:00 PM

Date Received: 5/27/2009 11:15:00

Balch Number: 9057

Laboratory Code: SCA

SOATIANNE TITL

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Activity (sGIL)	2 a Counting Error (pCVL)	Total Error (pCl/L)	MDA (pCifL)
EPA 900.0	BETA	OT109-9087-14B	06/26/09 13:32	7.28	3.17	3.85	4.05
EPA 903.1	RA-226	OT109-9067-14	06/04/09 18:58	7.31	0.574	2.27	0.348
EPA 904.0	RA-228	OT109-9087-14	06/03/09 13:07	0.710	0.418	0.469	0.596

	Int. 128.00 (88)	Quality Control Sa	roples	
	SCAGC-8067-LC1B	Laboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Spike (MS)	Preparation Blank (PS) SCAQC-9067-PB1B
Bets Ra	SCADC-9067-LC1	SCAQC-9067-LD1	SCAQC-9067-MS1	SCAQC-9067-PB

Radioanalytical Results

Report Identification Number: 59067_9115

Project Name: QTE - TN&A Chain-of-Custody Number: Matrix: Water Site Sample ID: CP-0908027

Other Sample ID: Collection Date: 5/25/2009 3:15:00 PM Date Received: 5/27/2009 11:15:00

Batch Number: 9057 Laboratory Code: 90A

Method Number	Badonucida	Laboratory Sample ID	Analysis Date/Time	Activity (pC/L)	2 e Counting Error (pC/L)	Total Error (BCVL)	MDA (siCiA)
EPA 900.0	ALPHA	OTIO9-9067-15	06/21/09 08:44	0.046	0.773	0.773	1.50
EPA 900.0	BETA	OT109-9067-158	0626091332	0.590	0.680	0.703	1.04
EPA 903.1	RA-226	OT109-9067-15	06/04/09 16:58	0.063	0.256	0.257	0.441
EPA 904.0	PA-228	OT109-9067-15	0603/09 13:07	0.092	0.345	0.346	0.614

		Quality Control Say	mples	
Radionucide Alpha	Laboratory Control (LC)	Laboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Spike_IMS)	Preparation Blank (PB) SCAQC-9067-PB1
Beta	SCAQC-9067-LC18	SCAQC-9067-LD1		SCAQC-9067-PB18
Ra	SCAQC-9067-LC1	SGAQC-9067-LD1	SCAGC-9087-MS1	SCAQC-9067-PB

Radioanalytical Results

Raport Identification Number: 59057_9115

Project Name: QTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905015

Other Sample ID:

Collection Date: 5/25/2009 8:30:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9055

Method Number	Badionuclide	Laboratory Sample ID	Analysis Date/Time	2 o Counting Error (pC/L)		MDA (sQ/L)
SM 7110C			06/19/09 17:15	5.35	28.4	1.96

		Quality Control Sar	mples	
	Laboratory Central (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PE)
Alpha	SCAQC-9085-LCB	90AQC-9085-LD1		SCAQC-9085-P81

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Metric: Water

Site Sample ID: CP-0905016

Other Sample ID:

Collection Date: 5/25/2008 8:45:00 AM

Date Received 5/27/2009 11:15:00

Batch Number: 9085

Method Number	Sadionucida	Laboratory Sample ID	Analysis Date/Time		2 e Counting Error (pCi/L)	Total Error (pCVL)	MDA (pC/L)
	ALPHA	OT109-9085-02	05/19/09 19:01	46.3	5.43	23.8	2.49

		Quality Control Sar	mples	
Radionuside	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (25)
Alpha	SCAQC-9085-LCB	SCAQC-9085-LD1		SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Marrie: Yoster

Site Sample ID: CP-0905019

Other Sample ID:

Collection Date: 5/25/2009 9:30:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9055

Laboratory Code: SCA

Market Nicolay	Dationarida	Laboratory	Analysis	2 o Counting Error	ALCOHOLD S	MOA
		OT109-9085-03		3.54	11.1	1.85

Quality Control Samples

Radionuclide Laboratory Control (LC) SCAQC-9085-LCB Alpha

Laboratory Duplicate (LD)

9CAQC-9085-LD1

Matrix Spike (MS)

Preparation Stank (PS)

SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_\$115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix Water

Site Sample ID: CP-0905020

Other Sample ID:

Collection Date: 5/25/2009 9:45:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SCA

Method Number	Badiosucide	Laboratory Sample ID	Analysis Date/Time	2 or Counting Error (pC/L)		MOA (BCVL)
		OTID8-9085-04		3.06	9.12	1.87

Quality Control Samples

Radionuside Laboratory Control (LC) SCAQC-9085-LCB

Laboratory Duplicate (LD) Matrix Spike (MS)

SCAQC-9085-LD1

Preparation Stant. (PS)

8CAQC-6086-PB1

Radioanalytical Results

Report Identification Number: 59067_9115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905025

Other Sample IC:

Collection Date: 5/25/2009 10:00:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SCA

Method Number	Radionuclide	Laboratory Sample ID	Analysis Date/Time	2 g Counting Error (pG/L)		MDA (bC/L)
		GT109-9085-05		4.06	14.1	2.26

Quality Control Samples

Redionuclide Laboratory Control (LC) SCAQC-9085-LCB Alpha

Laboratory Duplicate (LD) Matrix Spike (MS) 8CAQC-9085-LD1

Preparation_Blank_(PS)

SCAQC-9085-P81

Radioanalytical Results

Report Identification Number: \$9087_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Marric Water

Site Sample ID: CP-0905028

Other Sample ID:

Collection Date: 5/25/2009 10:15:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SGA

Method Number				BCALL	2 a Counting Error (pC/L)		MDA _UKNLL_
SM 7110C	ALPHA	OT109-9085-06	06/19/09 19:01	20.1	3.31	10.6	1.09

Quality Control Samples

Badlonuclide Laboratory, Control J.C. Alpha

Laboratory Duplicate (LE) Matrix Spike (MS)

Preparation Blank (PS): SCAQC-9085-P91

SCAQC-9085-LCB

SCAQC-9085-LD1

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTE - TM&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP.0905007

Other Sample ID:

Collection Date: 5/25/2009 11:00:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SCA

-3 - 5 0 0		Laboratory	Analysis	Activity	2 or Counting Error	Total Error	MDA.
Method Number	Radionuplide	Sample ID	_Date/Time_	_(6C)(L)	(aCIA)	_(pCVL)	(pC/L)
		OT109-9085-07			5.65	25.4	2.52

Quality Control Samples

Redionuclide Leboratory Control (LC) SCAQC-9085-LOB Alpha

Laboratory Duplicate (LD) Matrix Spike (MS)

SCAQC-9085-LD1

Preparation Blank (PB) SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: QTIE - TN&A

Cham-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905005

Other Sample ID:

Collection Date: 5/25/2009 11:15:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SCA

Method Number	Badionyclide	Laboratory Sample ID	Analysis Data/Time	2 e Counting Error (pCVL)		MDA (pQ/L)
SM 7110C		OT109-9085-08		4.73	21.5	1.90

Quality Control Samples

Radionuclide: Laboratory Control (LC) SCAQC-9085-LCB Alpha

Laboratory Duplicate (LD) Matrix Spike (MS) SCAQC-9085-LD1

Preparation Blank (Pt))

SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: White:

Site Sample ID: CP-0905003

Other Sample ID:

Collection Date: 5/25/2009 11:45:00 AM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SGA

		Laboratory	Analysis		2 or Counting Error	and the second second	MDA
Method, Number	Radionsclide	Sample ID	Date/Time_	CPCVL1	(BCAT)	- Dura	_6C(5)
SM 7110C	ALPHA	OT109-9085-09	05/19/09 20:49	2.48	1.86	2.08	2.31

Quality Control Samples

Radionuclide Laboratory Control (LC) SCAQC-9085-LCB Alpha

Laboratory Duplicate (LD) Matrix Salke (MS)

Preparation Blank (PB)

SCAQC-9085-LD1

Radioanalytical Results

Report Identification Number: 59067_9116

Project Name: OTIE - TNBA

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905004

Other Sample 10:

Collection Date: 5/25/2009 12:00:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Method Number SM 7110C		Laboratory Sample ID OTIO9-8085-10	Analysis _Date/Time_ 06/19/06 20:49		2 o Counting Error 		MDA _(pO(L) 1.70
---------------------------	--	------------------------------------	---	--	------------------------	--	------------------------

		Quality Control Sac	mples	
Badionucide	Laboratory Control (LC)	Laboratory Duplicate (LD) SCAQC-9085-LD1	Merrix Solve (MS)	Preparation Blank (PS) SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: 89067_9115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CD:0905009

Other Sample IO:

Collection Date: 5/25/2009 1:45:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Laboratory Code: SCA

Method Number	Badonyolde	Laboratory Sample ID	Analysis Date/Time	2 e Counting Error (sGAL)		MDA (pQ/L)
		OT109-9085-11		3.61	10.5	5.82

Quality Control Samples

Radionuclide Laboratory Control (LC) SCAGC-9085-LCB Alpha

Laboratory Duplicate (LD) SCAQC-8085-LD1

Matrix Spice (MS)

Preparation Blank (Pff) SCAQC-9085-P81

Radioanalytical Results

Report Identification Number: 59057_9115

Project Name: OTIE-TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905010:

Collection Date: 5/25/2009 2:00:00 PM

Date Received: 5/27/2009 11:15:00

Other Sample ID:

Betch Number: 9085

Laboratory Code: SCA

Method Number	Badionucida	Laboratory Sample ID	Analysis Date/Time	2 e Counting Error (pO/L)		MDA BIGILL
			07/01/09 15:07	3.25	10.6	1.49

Quality Control Samples

Radionuclide Laboratory Control (LC) SCADC-9085-LCB

Laboratory Duplicate (LD) Matrix Spike (MS) SCAQC-9085-LD1

Preparation Blank (PB)

SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905011

Other Sample ID:

Collection Date: 5/25/2009 2:45:00 PM

Date Received: 5/27/2009 11:15:00

Betch Number: 9085

Laboratory Code: SCA

		Laboratory	Analysis	Activity	2 # Counting Error	Total Error	MDA
Method Number	Radionucide	Sample ID	_Date/Time_	(bC)/L1	(MCML)	_0000	_(pC)(L)
		OT109-9085-13			6.08	30.5	1.68

Qualit		

Radionucide Laboratory Control (LC)
Alpha SCAGC-9085-LCB

Laboratory Duplicate (LD) Matrix Soike (MS) SCAQC-9086-LD1 Preparation Blank (PB) SCAQC-9085-PB1

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matric: Water

Other Sample ID:

Site Sample ID: CP-0905012

Collection Date: 5/25/2009 3:00:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9085

Method Number	Radionuclide	Laboratory Sample (D)	Analysis Date/Time	2 o Counting Error (aCIA.)		MDA (pQ/L)
		OT109-9085-14		5.58	25.3	1.86

		Quality Control Say	mples	
Radionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PS)
Aloha	SCADC-9085-LCB	SCACC-9085-LD1		SCAQC-9085-P91

Radioanalytical Results

Report Identification Number: \$9067_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Wister

Site Sample ID: CP-0905009

Other Sample ID:

Collection Date: 5/25/2009 1:45:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9115

Laboratory Code: SCA

Method Number	Badionuclide	Laboratory Sample ID	Analysis Date/Time	Assivity (scirl.)	2 a Counting Error (aCIA.)	Total Error (pG/L)	MDA _(xQ/L)
SM 7500-U C(n)	U-233/234	OT109-9115-01	08/28/09 16:46	24.6	2.56	5.55	0.067
SM 7500-U C(m)	U-235	OT109-8115-01	06/26/09 16:46	1.34	0.391	0.560	0.124
SM 7500-U C(H)	U-238	OT109-9115-01	06/26/09 16:46	25.4	2.63	5.71	0.067

Quality Control Samples Redishucide Laboratory Control (LC) Laboratory Duplicate (LD) Matrix Spike (MS) Preparation Stank (PS) SCAQC-9115-LD1 SCAQC-9115-P81 SCADC-9115-LC1

Radioanalytical Results

Report Identification Number: 88057_9115

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matric Winter

Site Sample ID: CP-090501D

Other Sample ID:

Collection Date: 5/25/2009 2:00:00 PM

Date Received: 5/27/2009 11:15:00

Batch Number: 9115

Laboratory Code: SCA

Method Number	Radionuclide	Laboratory Sample ID	Analysis Date(Time	Activity (pG/L)	2 e Counting Error (pC/L)	Total Error (pO/L)	MDA (xQ/L)
8M 7500-U C(m)	U-233/234	OTI09-9115-02	06/26/09 10:44	19.0	1.94	4.27	0.093
SM 7500-U C(m)	U-235	OTI09-9115-02	05/25/09 16:44	0.745	0.274	0.354	0.065
SM 7500-U C(m)	U-238	OTI09-9115-02	06/26/09 16:44	19.1	1.94	4.28	0.063

Radiosucible Laboratory Control (LC): 90AQ0-9115-L01

Quality Control Samples Laboratory Duplicate (LD) Matrix Spike (MS) SCAQC-9115-LD1

Preparation Blank (PB) SCAQC-9115-PB1

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: \$9057_9115

Project Name:	QTIE : TN&A	Chain-of-Custody Number:	block	Matrix	Weter
Site Sample ID:	NA				
Other Sample ID:	FCI	Collection Date:	5/27/2009 11:15:00 AM	Date Received: Laboratory Code:	5/27/2009 11:15:00 SCA

Method Number			Analysis _Date/Time_	Activity (eC/L)	2 or Counting Error (pCifL)	Total Error _BGA1	MDA (BCIA)
EPA 900.0	BETA	SCAQC-90674,C1B SCAQC-90674,C1	06/26/09 15:59	4.80	0.694	1.18	0.050
ACW03 ACW03	U-233/234 U-238	SCAGC-9067-LC1	06/24/09 16:56	4.82	0.696	1.19	0.028
EPA 903.1	RA-226	SCAQC-9067-LC1	06/03/09 17:30	12.1	0.754	3.72	0.371
EPA 904.0	RA-228	SGAQC-9067-LC1	06/02/09 17:28	0.89	1.00	2.30	0.704

		Quality Control Sa	mples	
Bedionuolide Beta	SCAGC-9067-LC1B	Laboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Solve (MS)	Preparation Blank (FB) SCAQC-9067-PB18
Ra	SCAQC-9067-LC1	8CAQC-9067-LD1	SCAQC-9067-M81	8CAQC-9067-PB
U	SCAQC-9067-LC1	8CAQC-9087-LD1		8CAQC-9067-PB1

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: 89067_9115

Method Number	Sadonucide	Laboratory Sample ID	Analysis Date/Time	 2 # Counting Error (pC/L)		MDA _(pG/L)
		SCAQC-9085-LCB		3.01	7.95	1.80

		Quality Control Sax	mples	
Badionucide	Laboratory Control (LC)	Leboratory Duplicate (LD)	Metric Solve (MS)	Preparation Blank (PS)
Alpha	SCAGC-9085-LCB	SCAQC-9085-LD1		SCAQC-9085-PB1

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: \$9007_9115

Project Name: OTIE - TNSA

Chain-of-Custody Number: None

Matrix: Weter

Site Sample ID: N/A

Other Sample ID: LC1

Collection Date: 5/27/2009 11:15:00 AM

Date Received: 5/27/2009 11:15:00

Laboratory Code: SCA

Method Number	Badistupide	Laboratory Sample ID	Analysis Date/Time		Total Error	MOA (gCVL)
		SGAQC-9115-LC1		0.424	0.893	0.014
SM 7500-U C(m)		SCAQC-9115-LC1		0.428	0.903	0.014

Badionucide Laboratory Control (LC) 90AQ0-9115-L01

Quality Control Samples

Laboratory Duplicate (LD) Matrix Spike (MS) SCAQC-9115-LD1

Preparation Blank (PB) 8CAQC-9115-PB1

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9057_9115

Project Name: QTIE : TNSA Chain-of-Custody Number: Matrix: YESSE
Site Sample ID: QP-0905015
Other Sample ID: LD1 Collection Date: 5/25/2009 8:45/00 AM Custo Received: 5/27/2009 11:15:00 Laboratory Code: SGA

United Number	Redonadde	Laboratory Sample ID	Analysis Date/Time	Activity (pC/L)		Yotal Error (pC/L)	MOA (sQ/L)
		SCAGC-8067-LD1			0.265	0.278	0.423
EPA 903.1 FPA 904.0		SCAQC-9087-LD1			0.392	0.413	0.615

Labo	ratory Samples for D	uplicates
Badiocuclide	Laboratory Sample ID	Duplicate of Sample ID
RA-226	SCAQC-906T-LD1	OT109-9067-02
RA-228	SCAQC-9067-LD1	OT109-9067-02

		Quality Control Ser	mples	
Rationuclide	Leboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Re	SCAQC-80674,C1	SCAGC-906T-LD1	SCAQC-9067-MS1	SCAQC-8067-P8

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: 59067_9115

Project Name: QTIE - TNSA Chain-of-Custody Number: Metrix: Water
Site Sample ID: CP-0905019
Cither Sample ID: LD1 Collection Date: 5/25/2009 9:30:00 AM Date Received: 5/27/2009 11:15:00 Laboratory Code: SCA

		Laboratory	Analysis	Activity	2 e Counting Error	Total Error	MOA
Method Number	Badionucide	Sample ID	_Date/Time	_IECA1	(pC(L)	(BCVL)	(pG/L)
SM 71100		SCAQC-9085-LD1			4.03	13.0	2.39

	Laboratory	Duplicate of
Seclopuolide	Sample ID	Sample ID
ALPHA	SCAQC-8085-LD1	OT109-9085-03

Quality Control Samples						
Badionudide	Laboratory Central (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Black (28)		
Alpha	SCAQC-9086-LCB	SCAQC-9085-LD1		SCAQC-9085-P81		

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9067_9115

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Activity (pCi/L)	2 a: Counting Error (pCVL)	Total Error (pGIL)	MDA (pCI/L)
EPA 900.0		8CAQC-9067-LD1		-0.041	0.800	0.800	1.58
EPA 900.0		SCAQC-9067-LD1	06/26/09 13:32	-0.075	0.590	0.590	1.06

Labo	retory Samples for Di	uplicates
Badionucide	Laboratory Sample ID	Duplicate of Sample ID
ALPHA	SCAQC-9087-LD1	OTI09-9067-15
DETA	SCAQC-9067-LD1	OT109-9067-15B

		Quality Control Ser	mples	
Badiosudida Alpha	Laboratory Control (LC)	Laboratory Dublicate (LD) SCAQC-9067-LD1	Matrix Spike (MS)	Preparation Black (PB) SCAQC-8067-PB1
Sets.	SCAQC-9067-LC1B	SCAQC-9087-LD1		SCAQC-9067-P818

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9067_9115

Project Name:	OTIE - TNSA	Chain-of-Custody Number:	Matrix	Wedec
Site Sample ID:	CP-0905015			
Other Sample ID:	LD1	Collection Date: 5/25/2009 5:30/20	LAM Date Received: Laboratory Code:	5/27/2009 11:15:00 SCA

Method Number		Laboratory Sample ID		_(pC/L)_		Total Error _(pCVL)	MDA (pG/L)
ACW00	U-233/234	SCAQC-9067-LD1	06/24/09 16:56	38.6	4.60	8.99	0.090
ACW03	U-236	SCAQC-9067-LD1	06/24/09 16:56	1.67	0.550	0.745	0.110
ACIVO3	U-238	SCAGC-9067-LD1	06/24/09 16:56	36.6	4.38	8.51	0.089

Labo	ratory Samples for Di	uplicates	
Badionuclide	Laboratory Sample ID	Duplicate of Sample ID	
U-234	8CAQC-8067-LD1	OT109-9067-01	
U-235	SCAQC-9067-LD1	OT109-9067-01	
U-238	SCAQC-9067-LD1	OT109-9067-01	

		Quality Control Sar	mples	
Redionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
U	SCAQC-9067-LC1	SCAQC-9067-LD1 -		SCAQC-8067-PB1

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: 59067_9115

Project Name: QTIE - TNSA

Chain-of-Custody Number:

Matrix: Yilder

Site Sample ID: CP-0905008

Other Sample ID: LD1

Collection Date: 5/28/2009 1:45:00 PM

Date Received: 5/27/2009 11:15:00

Method Number	Badooxolda	Laboratory Sample ID	Analysis Date/Time	Activity (bCi/L)	2 e Counting Error	Total Error (pCHL)	MDA (bCl/L)
SM 7500-U C(H)	U-233/234	SCAQC-9115-LD1	06/25/09 16:45	23.9	2.48	5.36	0.058
SM 7500-U C010		SCAQC-9115-LD1	08/25/08 16:45	1.36	0.396	0.568	0.072
SM 7500-U C(m)		SCAQC-9115-LD1	06/25/09 16:45	24.6	2.54	5.53	0.103

Labo	vatory Samples for D	uplicates	
Badionucida	Laboratory Sample ID	Duplicate of Sample ID	
U-234	SCAQC-8115-LD1	OT109-9115-01	
U-238	SCAQC-9115-LD1	OT109-9115-01	
U-238	SCAQC-9115-LD1	OT109-9115-01	

		Quality Control Ser	mples	
Badlonuclide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Solke (MS)	Preparation Blank (PB)
U	SCAQC-9115-LC1	SCAQC-9115-LD1		SCAGC-9115-PB1

Radioanalytical Results

Quality Control Sample Matrix Spike (MS1)

Report Identification Number: \$9067_9115

Project Name: QTIE - TNBA

Chain-of-Custody Number: None

Martric Villates

Site Sample ID: CP-0905019

Other Sample ID: MS1

Collection Date: 5/25/2009 9:30:00 AM

Date Received: 5/27/2009 11:15:00

Method Number	Radionucide	Laboratory Sample ID	Analysis Date/Time	Activity (pC)(L)	2 a Counting Error (pC/L)	Total Error (BC/L)	MDA (bOIL)
EPA 903.1		SCAGC-9067-MS1		12.7	0.788	3.90	0.378
EPA 904.0	RA-228	8CAQC-9067-MS1	06/02/09 16:13	7.15	0.908	2.55	0.897

Quality Control Samples					
Radionucida	Laboratory Control (LC)	Laboratory Duplicate (LD):	Matrix Spike (MS)	Preparation, Blank (PS)	
Ra	SCAGC-9087-LC1	SCAQC-9067-LD1	SCAQC-906T-MS1	SCAQC-9067-PB	

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report Identification Number; 99067_9115

Project Name: QTIE - TN&A Chain-of-Custody Number: Note Matrix: 20085:
Site Sample ID: N/A
Other Sample ID: PB Collection Date: \$27/2009 11:15:00 AM Date Received: \$27/2009 11:15:00 Laboratory Code: \$2A

Method Number	Badionuclida	Laboratory Sample ID	Analysis Date/Time	Activity (pCVL)	2 e Counting Error	Total Error (pCIA)	MDA (ECVL)
EPA 900.0	ALPHA	BCAQC-9087-P81	06/21/09 08:43	-0.147	0.886	0.889	1,67
EPA 900.0	BETA	SCAQC-9067-P81B	06/25/09 16:52	-0.347	0.266	0.259	0.415
ACW03	U-233/234	SCAQC-9067-P91	06/24/09 16:56	0.060	0.086	0.086	0.085
ACW03	11-235	SICAQC-9067-PB1	08/24/09 16:56	0.000	0.000	0.135	0,100
ACW03	U-238	SCAQC-6067-P81	06/24/09 16:56	0.060	0.084	0.085	0.081
EPA 903.1	RA-226	8CAQC-9067-PB	06/03/09 13:37	0.118	0.266	0.269	0.451
EPA 904.0	RA-228	8CAQC-9067-P8	08/02/09 16:12	0.394	0.358	0.377	0.557

		Quality Control Sa	mples	
Radionucide Alpha	Laboratory Control (LC)	Leboratory Duplicate (LD) SCAQC-9067-LD1	Matrix Scike (MS)	Preparation Blank (PB) SCAQC-9067-PB1
Beta	8CAQC-8067-LC18	SCAQC-9067-LD1		SCAQC-9067-P81B
Re	SCAQC-8067-LC1	SGAQC-9067-LD1	SCAGC-9067-MS1	SCAQC-9067-P8
U .	SCAQC-9067-LC1	SCAQC-9067-LD1		SCAQC-9967-P81

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report Identification Number: \$9057_9115

Project Name: OTIE - TNSA Chain-of-Custody Number: Note Matrix: Youter
Site Sample ID: N/A
Other Sample ID: PB Collection Date: 5/27/2009 11:15:00 AM Date Received: 5/27/2009 11:15:00 Laboratory Code: SCA

		Laboratory	Analysis		2 e Counting Error		MOA
Method Number	Radionucide	Semple_ID	_Date/Time_	LINCOL)	(bC/L)	_(ECVL)_	(BCVL)
		SCAQC-9085-P81			1.37	1.42	2.56

		Quality Control Sar	mples	
Badonuclida	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Stank (PB)
Alpha	SCAQC-9085-LCB	SCAQC-9085-LD1		SCAQC-9085-PB1

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report Identification Number: \$9067_9115

Project Name: OTIE - TN&A Chain-of-Custody Number: Note Matrix: Water
Site Sample ID: N/A
Other Sample ID: PB Collection Date: 5/27/2009 11:15:00 AM Date Received: 5/27/2009 11:15:00 Laboratory Code: SCA

Method Number	Radionucide	Laboratory Sample 1D	Analysis Date/Time	Activity _(pC/L)	2 er Counting Error	Total Error (pGifL)	MDA (pC/L)
SM 7500-U C(m)	U-233/234	SCAGC-8115-P81	06/25/09 16:45	0.045	0.063	0.064	0.061
SM 7500-U C(m)	U-235	SCAQC-9115-P91	06/26/09 16:45	0.000	0.000	0.136	0.075
SM 7500-U C(H)		SCAQC-9115-P81	08/05/09 16:45	0.067	0.077	0.078	0.060

		Quality Control Sa	mples	
Badionuclide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Precention Blank (PS)
U	SCAQC-8115-LC1	SCAQC-9115-LD1		SCAQC-9115-P81

Radioanalytical Results

Quality Control Sample Evaluation

Report Identification Number: \$8067_9115

Project Name: OTIE - TNSA

Metric Water

			100	ple (LC1) Evaluation		
		Laboratory	Decay Corrected Activity of Spike Added	(DV) Laboratory Combol Sample Activity	Laboratory Control Sample % Recovery	Number of a
Method Number	Eadorución	Sample ID	(pQ(L)	(pG/L)	_0Accuracyo_	Between CV and CV
BM 7110C	ALPHA .	SCAQC-9085-LDB	15.0 ± 0.460	14.7 ± 7.86	98.2	0.049
EPA 900.0	BETA	SCAQC-9087-LC18	17.3 ± 0.399	14.6 a 4.70	84.2	0.848
ACW03	U-233/234	SCAQC-9087-LC1	4.09 ± 0.025	4,80 a 5,18	117	0.929
ADW03	U-238	SCAGC-9067-LC1	4.09 a 0.005	4.82 ± 1.19	118	0.967
SM 7500-U C(H)	U-233/234	SCAQC-9115-LC1	4.09 a 0.025	3.93 ± 0.893	96.0	0.275
SM 7500-U C(m)		S0A00-9115-L01	4.00 ± 0.025	3.98 ± 0.903	97.2	0.191
EPA 903.1	RA-226	SCAQC-9067-LC1	11.2 ± 0.134	12.1 ± 3.72	108	0.358
EPA 904.0	RA-228	BCAQC-9087-LC1	7.19 ± 0.288	6.89 a 2.30	95.8	0.194

		Ma	trix Spike Sampl	e (M\$1) Evaluation	en :		
		Laboratory	(CV) Decay Corrected Activity of Spike Added	Matrix Spike Sample Activity	(DV) Native Sample Activity	Matrix Spike Sample 16 Recovery	Number of a Between
Method Number	Radionuclida	Sample ID	(PCH)	(A)(2q)	(pC(L)	_incorrect.	CV and O
EPA 903.1	RA-226	SCAQC-9067-MS1	11.2 ± 0.134	12.7 ± 3.90	1.27 ± 0.548	102	0.560
EPA 904.0	RA-228	SCAQC-9067-MS1	7.19 ± 0.288	7.16 ± 2.33	0.633 ± 0.488	90.5	0.029

		Laborar	tory Dup	lica	rte San	spie (LD	11) [valuat	ion	
Method Number	Radionuclida	Leboratory Sample ID	,	nal S Activ			cate Activ		Difference Between Original Activity and Duplicate Sample Activity (F)	Ratio of the Difference Setween the Sample Activity and the Propagated Measurement at 1 o (F/E)
8M 7110C	ALPHA.	SCAQC-9085-LD1	20.0		11.1	24.8		13.0	3.82	0.448
EPA 900.0	ALPHA.	SCAQC-9067-LD1	0.046	=	0.775	-0.041		0.800	0.067	0.157
EPA 900.0	DETA	SCAQC-9067-LD1	0.590	2	0.703	-0.075		0.590	0.965	1.45
ACW00	U-233/234	SCAQC-9067-LD1	35.4	*	8.19	38.0		8.99	3.24	0.633
ACW00	U-235	8CAQC-9067-LD1	1.59		0.710	1.67		0.745	0.085	0.165
ACW03	U-238	SCAGC-9087-LD1	37.6		8.67	38.5		8.51	1.08	0.178
SM 7500-U C(U-233/234	SCAQC-9115-LD1	24.0		5.55	23.9	±	5.38	0.730	0.189
SM 7500-U C(U-236	SCAQC-9115-LD1	1.34	=	0.560	1,36		0.568	0.019	0.048
SM 7500-U C(U-238	BCAQC-9115-LD1	25.4		5.71	24.6		5.53	0.780	0.196
EPA 903.1	RA-226	SCAQC-9067-LD1	0.209	*	0.286	0.267		0.278	0.078	0.362
EPA 904.0	RA-228	SCAQC-9067-LD1	0.166		0.362	0.432		0.413	0.265	0.967

Radioanalytical Results

Quality Control Tracer Yield

Report Identification Number: \$9067_9115

Project Name: OTE - TNSA

Laboratory Sample ID	_U-232
OTI09-9067-01	90.68
OTIO9-9067-01C	90.66
OTI09-9057-02	86.38
OTIO9-9067-028	86.38
OT109-9067-03	72.19
OT109-9067-03B	72.19
OTIO9-9057-04	75.90
OT109-9057-04B	75.90
OTIO9-9067-06	69.28
QTI09-9067-05B	69.28
QT109-9067-05	67.75
OT109-9067-06B	67.75
OTI09-9067-11	0.33
OT109-8067-11B	0.33
OT109-9067-12	0.35
OT109-9067-129	0.35
OT109-9115-01	85.48
OT109-9115-02	102.08
SCAQC-9067-LC1	72.45
SCAQC-9067-LC1	72.45
8CAGC-9067-LD1	83.04
SCAQC-9067-P9	93.12
SCAQC-9067-P91	93.12
SCAQC-9087-PB1	93.12
SCAQC-9115-LC1	87,41
SCAQC-9115-LD1	85.58
SCAQC-9115-PB1	85.40

Radioanalytical Results

Quality Control Chemical Recovery

Report Identification Number: 59067_9115

Project Name: OTIE - TNSA

Laboratory Samola, ID	Ra-228
OTI09-9067-01	129.51
OT109-9067-01C	129.51
OT109-9067-02	129.51
OT109-9067-02B	129.51
OT109-9067-03	129.51
OTIO9-9067-00B	129.51
OTIO9-9067-04	129.51
OT109-906T-04B	129.51
OT109-9067-06	129.51
OT109-9067-06B	129.51
OTIO9-9067-06	129.51
OT109-9067-06B	129.51
GT109-9067-07	129.51
OT109-9067-07B	129.51
OT109-9067-08	129.51
OT109-9067-08B	129.51
OTI09-9067-09	129.51
OT109-9067-09B	129.51
OTIO9-9067-10	129.51
OT109-9007-10B	129.51
OT109-9067-11	129.55
OT109-9067-11B	129.51
OTI09-8067-12	129.51
OTIO9-9067-128	129.51
OTI09-9067-13	129.51
OT109-9067-138	129.61
OTI09-9067-14	129.51
OT109-9067-14B	129.51
OT109-9067-15	129.51
OT109-9067-15B	129.51
SCAQC-9087-LC1	129.51
SCAQC-9087-LC1	129.51

Radioanalytical Results

Quality Control Chemical Recovery

Report Identification Number: 89067_9115

Project Name: OTIE - TNSA

Laboratory Sample ID	Ra-228
SCAQC-9067-LD1	129.51
SCAGC-9067-MS1	129.61
SCAQC-9067-P8	129.81
SCAQC-9067-PB1	129.51
SCAQC-9067-PB1	129.51

July 1, 2009

Ms. Ewelina Mutkowska OTIE- TN&A 317 E. Main St Ventura, CA 93001

Dear Ms. Mutkowska:

On May 28, 2009, 13 water samples were received for analysis at the GPL Laboratories Alabama, LLC. The samples were assigned Laboratory Report Identification Code 9068_9089. Enclosed is the Sample Data Package containing the radioanalytical results of the sample.

If you have any questions please do not hesitate to call.

Sincerely,

Richard Turner Laboratory Director

COVER PAGE

GPL Laboratories Alabama, LLC 1000 Monticello Court Montgomery, Alabama 36117

NELAC Certification ID: NLC080001 (AL001)

Laboratory Report Identification Code: 9068

Sample Matrix: Water

Site Sample Number	Laboratory Sample Number
CP-0905005	OT109-9068-01 OT109-9089-01
CP-0905006	OT109-9068-02 OT109-9089-02
CP-0905001	OTI09-9068-03 OTI09-9089-03
CP-0905002	OTI09-9068-04 OTI09-9089-04
CP-0905023	OT109-9068-05 OT109-9089-05
CP-0905024	OT109-9068-06 OT109-9089-06
CP-0905013	OTI09-9068-07 OTI09-9089-07
CP-0905014	OT109-9068-08 OT109-9089-08
CP-0905017	OTI09-9068-09 OTI09-9089-09
CP-0905018	OT109-9068-10 OT109-9089-10
CP-0905021	OT109-9068-11 OT109-9089-11
CP-0905022	OT109-9068-12 OT109-9089-12
CP-0905028	OT109-9068-13 OT109-9089-13

COVER PAGE(continued)

GPL Laboratories Alabama, LLC 1000 Monticello Court Montgomery, Alabama 36117

NELAC Certification ID: NLC080001 (AL001)

Laboratory Report Identification Code: 9068_9089

Comments: There were no problems encountered during sample receiving.

"I certify that this sample data parkage is in compliance with contract requirements, both technically and for completeness. It clease of the data contained in this hard-copy sample data package has been surhorized by the Laboratory Director or the Laboratory Director designee, as verified by the following signature."

Signature

Richard Turner Laboratory Director 07/01/2009

Name Title Date

CASE NARRATIVE

Laboratory Report Identification Number: 9068_9089

NELAC Certification ID: NLC080001 (AL001)

July 1, 2009

I. Introduction

On May 28, 2009, 13 water samples were received for analysis at the GPL Laboratories Alabama, LLC located in Montgomery, Alabama. The samples were analyzed in accordance with the GPL Laboratory Quality Assurance Plan.

The data in this report meets all NELAC requirements unless otherwise stated.

II. Analytical Methodology

The radioanalytical results reported for the sample include the site and laboratory sample identification numbers, collection date, method of analysis, and the quality control samples that were analyzed concurrently. The samples were analyzed by the following methods.

Radionuclide	Method Number	Method Name	Counting Method	
Co-Precipitation	8M711C	Gross Alpha Radioactivity	Gas Proportional Counting	
Gross Alpha (U)	EPA 900.0	Gross Alpha Radioactivity	Gas Proportional Counting	
Gross Beta	EPA 900.0	Geoss Beta Radioactivity	Gas Proportional Counting	
Ra-226	EPA 903.1	Radium-226 Radon Emanation Technique	Radon PlasioScales	
Ra-228	EPA 904.0	Radium-228	Gas Proportional Counting	
Unanium	ACW03	Eichrom Industries Extraction Chromatography	Alpha Spectrometry	

III. Analytical Results

Deficiencies

See "Re-analysis" section.

Matrix Interferences

There were no indications of matrix interference.

Detection Limits

The required detection limits (RDLs) were met for all sample analyses.

Re-analysis

Upon further review of the package, the gross alpha detection limits were not met for some of the samples. Those samples were recounted at longer times to achieve detection limits.

Deviations from Protocols

There were no deviations from the written protocols and analytical methods.

Contacts with the Technical Representative

There was no contact with the Technical Representative regarding these samples.

IV. Quality Control

The analytical results of all quality control samples met the acceptance criteria specified in the GPL Laboratory Quality Assurance Plan.

Radioanalytical Results

Radioanalytical Results

Report Identification Number: \$8068_9089

Project Name: QTIE: TN&A Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905005

Other Sample ID: Cullection Date: 5/27/2009 11:45:00 AM Date Received: 5/28/2009 845:00

Other Sample ID: Gollection Date: 5/27/2009 11:45:00 AM Date Received: 5/25/ Batch Number: 9088 Laboratory Code: SCA

Method Number	Badionucide		Analysis _Date/Time_	Activity _BGAL	2 or Counting Error (gCI/L)	Total Error (pCVL)	MDA (bCIE)
EPA 900.0	BUTA	OT109-9068-018	06/24/09 18:19	21.8	1.52	0.67	1.37
ACIW03	U-233/234	OT109-9068-01	06/24/09 19:59	29.2	2.77	6.46	0.110
ACW03	U-235	OTI09-9088-01	06/24/09 10:59	1.23	0.362	0.517	0.136
ACW03	U-238	OT109-9068-01	06/24/09 16:59	28.0	2.68	6.20	0.063
EPA 903.1	RA-226	OT109-9068-01	06/09/09 18:35	2.04	0.383	0.722	0.420
EPA 904.0	RA-228	OT109-9088-01	06/03/09 17:40	0.547	0.378	0.412	0.562

		Quality Control Say	reples	
Radionuclide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Deta	SCAQC-9068-LCB	SCAQC-9068-LD1		SCAQC-9068-PB1
Ra	SCAQC-9068-LC1	SCAGC-9068-LD1	SCAQC-9068-MS1	SCAQC-6068-PB
U	SCADC-9067-LC1	SCACC-9087-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TM&A

Chain-of-Custody Number:

Matric Water

Site Sample ID: CP-0905006

Other Sample ID:

Collection Date: 5/27/2009 12:00:00 PM

Date Received: 5/28/2009 8:45:00.

Batch Number: 9058

Method Number	Badonuside	Laboratory Sample ID	Analysis Date/Time	Activity (bGIL)	2 or Country Error (aCVL)	Total Error (pCVL)	MDA (sGISL)
EPA 900.0	BETA.	OT109-9068-028	05/24/09 18:19	12.2	1.61	4.00	1.92
ACW03	U-233/234	QT109-9068-02	06/24/99 17:00	30.1	3.05	6.74	0.062
ACW03	U-235	OT109-9068-02	06/24/09 17:00	1.24	0.587	0.636	0.076
ACW03	U-238	OT109-9068-02	06/24/09 17:00	28.9	2.94	0.49	0.061
EPA 903.1	RA-226	OT109-9068-02	05/09/09 18:35	4.44	0.504	1.42	0.431
EPA 904.0	RA-228	OT109-9068-02	06/03/09 17:41	0.293	0.345	0.356	0.661

		Quality Control Say	mples	
Badonucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spite (MS)	Preparation Blank (PB)
Deta	SCAQC-9088-LC8	8CAQC-9066-LD1		SCAGC-9068-PB1
Re	SCAQC-8088-LC1	SCAQC-9068-LD1	SCADC-9068-M81	8CAQC-9068-PB
U	SCAGC-9067-LC1	SCAQC-9067-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905001

Other Sample ID:

Collection Date: 5/27/2009 8:00:00 AM

Date Received: 5/25/2005 8:45:00

Batch Number: 9055

Method Number	Badionuolide	Laboratory Sample ID	Analysis Date/Time	Activity (sG/L)	2 a Counting Error	Total Error (pQ(L)	MDA (bG/L)
EPA 900.0	BETA	OT109-9068-038	08/24/09 18:20	6.33	0.899	2.10	1.15
EPA 903.1	RA-226	OT109-9068-03	06/09/09 20:07	4.88	0.524	1.56	0.446
EPA 904.0	IU-228	OT109-9068-03	06/03/09 17:40	2.20	0.547	0.867	0.566

	STOWN LINEOUS VOCAV	Quality Control Sa	mples	
Radionucide Beta	Laboratory Control (LC) SCAQC-9068-LCB	Leberatory Duplicate (LD) SCAQC-9088-LD1	Matrix Scike (MS)	Preceration Stank (PS) SCAQC-9058-PS1
Ra	SCAQC-9068-LC1	SCAGC-9068-LD1	8CAQC-9068-M81	SCAQC-9068-P8

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix Water

Site Sample ID: CP-0905002

Other Sample ID:

Collection Date: 5/27/2009 8:15:00 AM

Date Received: 5/25/2009 8:45:00

Satch Number: 9055

Method Number	Badoniolda	Leboratory Sample ID	Analysis Date/Time	Activity _(pC/L)_	2 a Counting Error (pCVL)	Total Error (pCVL)	MDA (bClfL)
EPA 900.0	BETA	OT109-9065-04B	06/24/09 18:20	6.52	0.858	2.14	1.06
EPA 903.1	RA-226	OT109-9068-04	06/06/09 20:07	5.61	0.550	1.74	0.380
EPA 904.0	RA-228	OT109-9068-04	06/04/09 13:25	4.46	0.738	1.53	0.899

	contribution coulds.	Quality Control Sa	mples	Albeidebasses von Se
Badonucide Beta	Leboratory Control (LC) SCAQC-6088-LCB	Laboratory Duplicate (LD) SCAQC-9088-LD1	Matrix Solva (MS)	Precerator Blank (PB) SCAQC-9068-PB1
Pa	SCAQC-9068-LC1	SCAQC-9068-LD1	SCAQC-9068-MS1	SCAQC-9068-PB

Radioanalytical Results

Report Identification Number: 59068_9089

Project Name: QTIE: TNSA Chain-of-Custody Number: Matrix: Visite:

Site Sample ID: CP-0905023

Other Sample ID: Collection Date: 5/27/2009 8:30:00 AM Date Received: 5/28/2008 8:45:00.

Batch Number: 9058 Laboratory Code: SCA

Method Number EPA 900.0		Laboratory Sample ID OTIOS-9088-068	Analysis Date/Time_ 06/24/09 18:21		2 = Counting Error (pCHL) 0.869	Total Error (pC/L) 1.98	MDA _10G(L)
EPA 903.1		OT109-9058-05	06/10/09 13:46	5.55	0.550	1.78	0.424
EPA 904.0	RA-228	OTIO9-9088-05	06/04/09 13:25	4.88	0.762	1.66	0.589

N-984-517		Quality Control Sar	mples	
	Laboratory Control (LC)	Laboratory Duplicate (LD) SCAQC-8068-LD1	Matrix Solve (MS)	Preparation Blank (PS) SCADC-9068-PB1
Beta	SCAQC-9058-LCB			
Ra	SCAQC-9068-LC1	SCAQC-9068-LD1	SCAQC-9068-MS1	SCAQC-9068-PB

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: QTIE - TN&A Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905004

Other Sample ID: Collection Date: 5/27/2009 5:45:00 AM Date Received: 5/28/2009 8:45:00.

Blatch Number: 9055 Laboratory Code: SCA

Method Number	Bationuclida	Laboratory Sample ID	Analysis _Date(Time_	Activity _IpCl/L1	2 a Counting Error (pC/L)	Total Error (pCl(L)	MDA (BC/L)
EPA 900 0	BETA	DT109-9068-06B	06/23/09 18:18	5.03	0.787	1.70	1.04
EPA 903.1	RA-226	GT09-9068-06	06/10/09 13:46	6.29	0.592	1.98	0.426
EPA 904.0	RA-228	OT109-9068-06	06/04/09 13:25	4.07	0.722	1.42	0.639

		Quality Control Sar	mples	
Radionucide Deta	Laboratory Control (LC) SCAQC-9068-LCB	Leboratory Duplicate (LD) SCAQC-6068-LD1	Matrix Solice (MS)	Precention Blank (PB) SCAQC-9088-PB1
Ra	SCAQC-9068-LC1	SCAGC-9988-LD1	SCAQC-9068-MS1	SCAQC-9088-P8

Radioanalytical Results

Report Identification Number: \$9065_9089

Project Name: QTIE - TNSA Chain-of-Custody Number: Matrix: Y9885
Site Sample ID: CP-0905013
Cther Sample ID: Collection Date: 5/27/2009 11:00:00 AM Date Received: 5/28/2009 8:45:00
Batch Number: 9058 Laboratory Code: SCA

Method Number	Badionuclide	Laboratory Sample ID	Analysis Date/Time	Activity (pCifL)	2 e Counting Error (pCVL)	Total Error (pC(5))	MDA (pC(A)
EPA 900.0	DETA	OT109-9068-07B	06/23/09 18:18	26.5	1.74	8.12	1.54
ACVVID	U-233/234	OT109-9068-07	06/24/09 17:00	28.8	2.83	6.42	0.057
ACVV03	U-236	OT109-9068-07	05/24/09 17:00	1.14	0.566	0.492	0.070
ACW00	U-238	OTIO9-9068-07	05/24/09 17:00	25.5	2.55	5.70	0.118
EPA 903.1	RA-226	OT109-9068-07	06/10/09 13:46	1.30	0.363	0.525	0.471
EPA 904.0	RV-228	OT109-9068-07	06/04/09 13:26	1.60	0.489	0.685	0.538

		Quality Control Sa	mples	
Radionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Deta	SCAQC-9068-LCB	SCAQC-9068-LD1		SCAQC-9068-PB1
Ra	SCAQC-9068-LC1	SCAQC-9068-LD1	SCAQC-9066-MS1	SCAQC-9068-PB
U	SCAQC-9067-LC1	SCAQC-6067-LD1		8CAGC-8067-P91

Radioanalytical Results

Report Identification Number: \$9068_9069

Project Name: OTIE - TN&A

Chain-of-Quetody Number:

Matrix: Water

Other Sample ID:

Site Sample ID: CP-0905014

Collection Date: 5/27/2009 11:15:00 AM

Date Received: 5/28/2009 8:45:00

Batch Number: 9068

Method Number	Badionuclide	Laboratory Sample ID	Analysis Date/Time	Addivity (pCit.)	2 o Counting Error (pC/L)	Total Error (pCVL)	MDA (pQIL)
EPA 900.0	BETA	OT109-9068-088	06/24/09 18:21	19.2	1.42	5.94	1.36
ACW03	U-233/234	OT109-9068-08	06/24/09 17:00	29.9	2.78	6.59	0.054
ACW03	U-235	OT109-9068-08	06/24/09 17:00	1.22	0.357	0.511	0.066
ACIW03	U-238	OT109-9058-05	06/24/09 17:00	27.1	2.56	5.99	0.063
EPA 903.1	RA-226	QT109-9068-08	06/10/09 13:46	0.775	0.304	0.383	0.435
EPA 904.0	RA-225	OT109-9068-08	06/04/09 13:26	2.14	0.556	0.849	0.593

		Quality Control Sar	reples	
Radionucide Data	Laboratory Control (LC) SCAQC-9058-LCB	Laboratory Duplicate (LD) SCAQC-9058-LD1	Matrix Spike (MS)	Preparation Blank (PE) SCAQC-9068-PB1
Re	8GAQC-8088-LC1	SCAQC-9068-LD1	8CAQC-6068-M81	SCAQC-9068-PB
U	8CAQC-9067-LC1	SCAGC-90874LD1		SCAGC-9087-P91

Radioanalytical Results

Report Identification Number: \$9068_9069

Project Name: OTIE - TNSA Chain-of-Custody Number: Matrix Water

Site Sample ID: CP-0905017

Other Sample ID: Collection Date: 5/27/2009 9/30/00 AM Date Received: 5/28/2009 8/45/00 Batch Number: 9055 Laboratory Code: 5/25

Method Number EPA 900.0	Radionucide BETA	Laboratory Sample ID OTIO9-9068-098	Analysis	Activity (pCifL) 0.375	2 e Counting Error (pCifL) 0.635	Total Error tsG/L1 0.645	MDA _6(0%) 1.03
ACIW03	U-233/234	OT109-9068-09	06/24/09 17:00	20.6	2.22	4.67	0.062
ACW03	U-235	OT109-9068-09	06/24/09 17:00	0.852	0.319	0.409	0.077
ACW03	U-238	OT109-9068-09	06/24/09 17:00	17.8	1.98	4.07	0.082
EPA 903.1	RA-226	OT109-9058-09	06/10/09 14:53	2.14	0.368	0.736	0.306
EPA 904.0	RA-228	OT109-9058-09	06/04/09 13:27	2.51	0.594	0.960	0.507

	and the last of the	Quality Control Sar	mples	
Radionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (Pti)
Bets	SCAQC-9088-LCB	SCAQC-9068-LD1		SCAQC-9068-PB1
Pa	8CAQC-8088-LC1	SCAQC-9068-LD1	SCAQC-9068-MS1	SCAQC-9068-P8
U	SCAGC-8087-LC1	SCAQC-9067-LD1		SCAQC-906T-P91

Radioanalytical Results

Report Identification Number: 89068_9089

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Marrisc Water

Site Sample ID: CP-0905018

Other Sample ID:

Collection Date: 5/27/2008 9:45:00 AM

Date Received: 5/25/2009 8:45:00.

Batch Number: 9068

Method Number	126711111111111111111111111111111111111		Analysis _Date/Time_	Activity (pCi(L)	2 a Counting Error (pGIL)	Total Error (pG/L)	MDA (BC/L)
EPA 900.0	BETA	OT109-9068-10B	06/24/09 18:21	7.83	0.807	2.48	0.858
ACW03	U-233/234	OT109-9058-10	05/24/09 17:00	12.7	1.48	2.93	0.068
ACW03	U-235	OT109-9068-10	06/24/09 17:00	0.395	0.208	0.240	0.072
ACW03	U-238	QT109-9068-10	06/24/09 17:00	11.7	1,39	2.72	0.058
EPA 903.1	RA-226	OT109-9068-10	06/10/09 14:53	0.440	0.304	0.331	0.472
EPA 904.0	RA-228	QT109-9058-10	06/04/09 13:27	1.64	0.506	0.706	0.577

		Quality Control Say	mples	
Bedonuclide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Beta	SCAQC-9068-LC8	SCAQC-9068-LD1		SCAQC-6088-PB1
Re	SCAQC-9068-LC1	SCAQC-9068-LD1	SCAQC-9088-MS1	SCAGC-9068-PB
U	8CAQC-9067-LC1	SCAQC-9007-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: 59068_9089

Project Name: QTE:-TNSA

Chain-of-Custody Number:

Matrix: Water

Ste Sample ID: <u>CP-0905021</u>

Other Sample ID:

Collection Date: 5/27/2009 12:30:00 PM

Date Received: 5/28/2009 5:45:00.

Slatch Number: \$055

Method Number	Badlonucide	Laboratory Sample ID:	Analysis Date/Time_	Activity (pC)/L)	2 or Counting Error (pC/L)	Total Error (pCVL)	MDA (BCIA)
EPA 900.0	BETA.	OTI09-9068-11B	06/23/09 18:19	52.6	2.36	16.0	1.48
ACW09	U-233/234	OTI09-9068-11	06/24/09 17:01	23.5	2.45	5.30	0.061
ACWES	U-236	OTIO9-9068-11	06/04/09 17:01	0.996	0.342	0.464	0.075
ACW03	U-238	OT109-9068-11	06/24/09 17:01	24.1	2.51	5.44	0.060
SPA 903.1	RA-226	OTIO9-9068-11	06/10/09 14:53	1,00	0.330	0.446	0.451
EPA 904.0	RA-228	OT109-9068-11	06/04/09 13:27	2.61	0.592	0.967	0.595

		Quality Control Sar	mples	
Radionucide Beta	Laboratory Control (LC) SCAQC-8068-LCB	Laboratory Duplicate (LD) SCAQC-9068-LD1	Matrix Solve (MS)	Preparation Blank (PS) SCAQC-8068-PB1
Ra	80A00-9088-L01	SCAQC-9068-LD1	SCAQC-9068-MS1	8CAQC-9068-PB
U	SCAQC-9067-LC1	SCAQC-9067-LD1		SCAQC-9067-PB1

Radioanalytical Results

Report Identification Number: 59068_9069

Project Name: QTIE - TNSA Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905022
Other Sample ID: Collection Date: 5/27/2009 12:45:00 PM Date Received: 5/28/2008 8:45:00.

Batch Number: 9055 Laboratory Code: SCA

Method Number	Radionucide	Laboratory Sample ID	Analysis Dete/Time_	Activity (pO/L)	2 s Counting Error (pO/L)	Total Error (pC/L)	MCA (pCVL)
EPA 900.0		OTIO9-9088-12B	06/25/00 16:58	26.7	1.50	0.18	1.38
ACWES	U-233/234	OT109-9088-12	06/24/09 17:01	16.2	1.94	4.13	0.055
ACWID .	U-236	OT109-9068-12	06/24/09 17:01	0.656	0.263	0.328	0,068
ACWID	U-238	OT109-9068-12	06/24/09 17:01	18.7	1.98	4.23	0.098
EPA 903.1		OT109-9068-12	05/10/09 14:53	0.662	9.274	0.338	0.384
EPA 904.0	RA-228	OT109-9068-12	06/04/09 14:00	1.07	0.522	0.684	0.648

		Quality Control Sa	mples	
Badionuclida Bata	Leboratory Control (LC) SCAQC-9068-LCB	Leboratory Duplicate (LD) SCAQC-9098-LD1	Matrix Salke (MS)	Preparation Blank (PS) SCAQC-9068-P81
Re	SCAQC-9068-LC1	SCAQC-9088-LD1	SCAQC-9068-M51	8CAQC-9088-PB
D.	SCAGC-90674.C1	SCADC-9067-LD1		8CAQC-9067-PB1

Radioanalytical Results

Report Identification Number: \$9056_5089

Project Name: QTIE - TN&A Chain-of-Custody Number: Matrix: Wister

Site Sample ID: QP-0905028

Other Sample ID: Collection Date: 5/27/2009 1:15:00 PM Date Received: 5/28/2009 8:45:00.

Batch Number: 9058 Laboratory Code: SGA

Method Number	Badicoudide		Analysis _Dete/Time	Activity (pCVL)	2 # Counting Error (pCVL) 0.688	Total Error (pCVL) 0.727	MDA (bC/L) 1.15
EPA 900.0	ALPHA	QT(09-9068-13	06/22/09 17:39	-0.469	5.50		
EPA 900.0	BETA	OT109-9068-13	06/15/09 15:50	1.25	0.764	0.861	1.10
EPA 903.5	RA-226	OT109-9068-13	06/10/09 16:50	1.83	0.371	0.662	0.431
EPA 904.0	RA-228	OT109-9058-13	06/04/09 14/01	1.09	0.511	0.607	0,686

		Quality Control Bar	nples	
Hadionuclide Alpha	Laboratory Control (LC)	Laboratory Duplicate (LD) SCAQC-9058-LD1	Matrix Solve (MS)	Preparation Blank (PSD SCAGC-9068-PB1
Deta	8CAGC-9068-LC8 8CAGC-9068-LC1	SCAQC-9958-LD1 SCAQC-9958-LD1	SCAGC-9068-MS1	SCAQC-9068-PB1 SCAQC-9068-PB

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Water

Ste Sample ID: QP-0905015

Other Sample ID:

Collection Date: 5/26/2009.8:30:00 AM

Date Received: 5/25/2009.8.45.00.

Batch Number: 9055

Method Number ACVV00		Laboratory Sample ID OT109-9067-01	Analysis Date/Time_ 09/24/09 10:57	Activity (pCif.)	2 e Counting Error (sCIA) 4.12	Total Error igCVU 0.19	MDA (0CHL) 0.087
ACWG3	U-235	OTIOS-8067-01	06/24/09 16:57	1.59	0.526	0.710	0.108
ACW08		OTIO9-9067-01	06/24/09 18:57	37.6	4.33	8.67	0.153

		Quality Control Sax	mples	
Badicouclide	Laboratory Control (LC)	Leboratory Duplicate (LD)	Matrix Solve (MS)	Precention Blank (PS)
U	SCAQC-9097-LC1	SCAQC-9067-LD1		SCAQC-9067-P81

Radioanalytical Results

Report Identification Number: \$9066_9089

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: <u>CP-0905005</u>

Other Sample ID:

Collection Date: 5/27/2009 11:45:00 AM Date Received: 5/25/2009 8:45:00.

Batch Number: 9089

Laboratory Code: SCA

		Laboratory	Analysis	Activity	2 a Counting Error	The second of	MDA
Method Number	Sadonuolite	Sample ID	_Date/Time_	(MCVL)	(pC/L)	_BCH.)_	_0C(L)
SM 71100		QTI09-9089-01	06/20/09 11:11	32.1	4.31	16.6	2.15

Quality Control Samples

Radionuclide Laboratory Control (LC) SCAQC-9089-LCB Alpha

Laboratory Duplicata (LO)

Matrix Spike (MS)

Preparation, Black, (PS) SCAQC-9089-P9

SCAQC-9089-LD1

Radioanalytical Results

Report Identification Number: \$9068_9069

Project Name: QTIE - TNSA Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905006
Collection Date: 5/27/2009 12:00:00 PM Date Received: 5/25/2008 5:45:00.
Batch Number: 9089 Laboratory Code: 5/26

Method Number	Radionuclide	Laboratory Sample ID	Analysis Date/Time		2 & Counting Error (pCifL)	Yotal Error (pCIL)	MDA _(pC/L)
			06/20/09 11:11	30.1	4.04	15.6	1.70

		Quality Control Sa	mples	
Badionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Macrix Spike (MS)	Preparation Stank (PB)
Alpha	SCADC-9089-LDB	SCAQC-9089-LD1		SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: 89088_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Meric Water

Other Sample ID:

Site Sample ID: <u>CP-0905001</u>

Collection Date: 5/27/2009 8:00:00 AM

Date Received: 5/25/2009 8:45/30.

Batch Number: \$088

Laboratory Code: SCA

		Laboratory	Analysis		2 a Counting Error	Total Error (pC/S)	MDA (pCVL)
					434	18.0	1.53
SM 7110C	ALPHA.	OT109-9089-03	QT/Q1/Q9 16:49	36.0	4.34	19.0	

Quality Control Samples Preparation Black (PB) Leboratory Duplicate (LD) Matrix Spike (MS) Radionucide Laboratory Control (LC) SCAQC-9089-PB SCAQC-9089-LD1 SCAQC-9089-LCB Alpha

Radioanalytical Results

Report Identification Number: 59068_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Yorker

Other Sample ID:

Site Sample ID: <u>CP-0905002</u>

Collection Date: 5/27/2006 & 15:00 AM

Date Received: 5/26/2009 8:45:00.

Batch Number: 9089

Method Number	Badionuside	Laboratory Sample ID		(bCVL)		_0C(L)_	MDA (pC/L)
SM 7110C	ALPHA	OT109-9089-04	07/01/09 16:49	34.9	4.34	18.0	1.40

		Quality Control Say	mples	To the control of the control of
Radionuclide	Leberatory Control (LC) SCACC-9089-LCB	Leboratory Duplicate (LD) SCACC-9089-LD1		Preparation Blank (PS) SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: \$9066_9069

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Other Sample 10:

Site Sample ID: CP-0905023

Collection Date: 5/27/2009 8:30:00 AM

Date Received 5/28/2008 8/65/20.

Batch Number: 1089

Laboratory Code: SCA

				Activity	2 o Counting Error	Total Error	MDA.
Method Number	Radionucide	Sample ID	Analysis Date/Time			The second second	(oCit.)
	ALPHA	QT109-9089-05	67/01/09 21:20	26.3	4.04	13.8	1.81

Quality Control Samples

Radionucide Laboratory Control (LC)

Laboratora Duplicate (LD) Matrix Spike (MS)

Preparation Blank (PB) SCAQC-9089-PB

Alpha

8CADC-9089-LC8

SCAGC-9089-LD1

Radioanalytical Results

Report Identification Number: \$9065_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Macro: Water

Site Sample ID: CP-0905024

Other Sample ID:

Collection Date: 5/27/2009 8:45:00 AM

Date Received: \$/28/2009 8:45:00.

Batch Number: 9059

Laboratory Code: SCA

Method Number on 7110C			Inte/Time(pC/L)	a become a	Total Error 19G/L1 17.0	Actual Control of the
---------------------------	--	--	-----------------	------------	-------------------------------	--

Quality Control Samples

SCAGC-6089-LD1

Radionuclide Laboratory Control (LC) SCAQC-9089-LCB Alpha

Laboratory Duplicate (LD)

Matrix Spike (MS)

Preparation Blank (PS) SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: 89068_9089

Project Name: QTIE-TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: GP:0905012

Other Sample ID:

Batch Number: 9089

Laboratory Code: SCA

Method Number Badionsolide SM 71100 ALPHA	Laboratory Sample ID CTIOS-9089-07	Analysis _Date(Time_ 05/20/09 15:08		2 a Counting Error (pO/L) 4.73	Total Error (oCHL) 15.8	MDA (BCKL) 2.83
--	--	---	--	--------------------------------------	-------------------------------	-----------------------

Quality Control Samples

Eadionuclide Laboratory Control (LC) SCAQC-9089-LCB Alpha

Laboration, Duplicate (LD) Matrix Spike (MS) SCAGC-9089-LD1

Preparation Blank (PB) SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix Water

Site Sample ID: CP-0905014

Other Sample ID:

Collection Date: 5/27/2009 11:15:00 AM Date Received: 5/25/2009 5:45:00

Betch Number: 9089

Laboratory Code: SCA

		Laboratory	Analysis		2 e Counting Error	of the state of	MDA
Method Number	<u>Fladionucide</u>	Sample ID.	ReteTicss	_0CI/L1	(bC(L)	TBCM7	(sC(L)
SM 7110C	ALPHA:	OT109-9089-08	06/20/09 15:08	39.3	4.55	20.2	1.90

Quality Control Samples

Badienuclide Laboratory Control (LC) SCAGC-9089-LCB Alpha

Leboratory Duplicate (LD) SCAQC-0089-LD1

Matrix Spike (MS)

Preparation Blank (PB) SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: \$9068_9089

Project Name: OTIE - TN&A

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905017

Other Sample ID:

Collection Dwte: 5/27/2009 9:30:50 AM

Date Received: 5/25/2009 5:45:00.

Basch Number: 9089

Laboratory Code: SCA

Method Number	Radonucide	Laboratory Samole ID	Analysis Date/Time	2 a Counting Error (pO/L)	Total Error (pQ/L)	MDA (BC/L)
0.300.000.000			06/20/09 15:09	3.20	9.05	2.14

Quality Control Samples

Redionucible Laboratory Control (LC): SCAQC-9089-LCB Alpha

Laboratory Duplicate (LD) Matrix Spike (MS) SCAQC-9089-LD1

Preparation Blank (PB)

SCAGC-9089-PB

Radioanalytical Results

Report Identification Number: \$9055_9089

Chain-of-Custody Number: Project Name: OTIE - TNSA

Marrix Vision

Site Sample ID: CP-0905018

Collection Date: 5/27/2009 9:45:00 AM Other Sample ID:

Date Received: 5/28/2009 8:45:00

Batch Number: 9089

		Laboratory	Analysis		2 or Counting Error		MOA
Method Number	Radiopyclide	Sample D	_Date/Time_	_(pCML)	(pC/L)	_(pG/L)	(3C/L)
		OTIO9-9089-10			2.70	7.14	1.66

		Quality Control Sa	mples	
Sadenuckia	Laboratory Control (LC)	Laboratory Duplicata (LD)	Matrix Spike (MS)	Precaration Blank (PB)
Abha	SCAQC-9089-LCB	SCAQC-9069-LD1		SCAQC-9089-PB

Radioanalytical Results

Report Identification Number: 59068_9089

Project Name: QTIE - TNSA

Chain-of-Dustody Number:

Matrix: Water

She Sample ID: CP-0905021

Other Sample ID:

Collection Date: 5/27/2009 12:30:30 PM

Date Received: 5/25/2009 8:45:00.

Batch Number: \$053

Laboratory Code: SCA

Manual Number	Dationality	Laboratory	Analysis Date/Time		2 o Counting Error	Total Error (pCVL)	MDA (pCifL)
SM 7110C			07/01/09 19:38	28.3	4.01	14.7	1.62

Quality Control Samples

Radionuclide Laboratory Control (LC) SCAQC-9089-LCB Alpha

Laboratory Duplicate (LD) Matrix Spike (MS)

8CAQC-9089-LD1

Preparation Blank (PS): SCAQC-9089-P8

Radioanalytical Results

Report Identification Number: \$9058_9059

Project Name: OTIE-TNSA

Chain-of-Custody Number:

Matric Vilute:

Other Sample ID:

Site Sample ID: CP-0905022

Collection Date: 5/27/2009 12:45:00 PM

Date Received: 5/25/2009 5:45:00.

Batch Number: 9089

Laboratory Code: SCA

Mathed Number	Barfornistida	Laboratory Sample ID	Analysis Pate/Time		2 er Counting Error (wCist)		MDA (SCIAL)
			07/01/09 19:38	45.0	4.88	23.0	1.45

Quality Control Samples

Radionucide Laboratory Control (LC) SCADC-9089-LCB Alpha

Laboratory Duplicate (LD) Matrix Solke (MS) SCAQC-9089-LD1

Preparation Stank (PB) SCAQC-9089-P8

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: 59068_9089

Project Name: QTIE - TNSA

Chain-of-Custody Number: None

Metric Vilider

Site Sample ID: N/A

Other Sample ID: LCI

Collection Date: 5/28/2009 8:45:00 AM

Date Received: 5/25/2009 8:45:00.

Method Number	Radocuclida	Laboratory Sample ID	Analysis Data/Time	Activity (bC(L)	2 a Counting Error (aCIS)	Total Error (pC/L)	MDA (bC/L)
EPA 900.0	BETA	SCAQC-9068-LCB		18.2	1.91	5.78	0.985
EPA 903.1	RA-226	SCAQC-9068-LC1	06/09/09 20:07	11.2	0.727	3.43	0.431
EPA 904.0	RA-228	SCAQC-9068-LC1	06/03/09 17:38	7.65	0.030	2.53	0.554

		Quality Control Sar	mples	
-	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (NS)	Preparation Blank (PB) SCAGC-9966-PB1
Beta Ra	SCAQC-9068-LCB SCAQC-9068-LC1	SCAGC-8088-LD1 SCAGC-8088-LD1	9CAGC-9068-MS1	8CAGC-9068-PB

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: \$9068_5089

Project Name: QTIE - TNSA

Chain-of-Custody Number: None

Matrix: Water

Site Sample ID: N/A

Other Sample ID: LC1

Collection Date: 5/28/2009 8:45:00 AM

Date Received: 5/28/2009 8:45:00.

Laboratory Code: SGA

Method Number SM 7110C	Radiocucida ALPHA	Laboratory Sample ID SCAGG-9089-LCB	Analysis _Date/Time_ pt/11/09 21:57	Addivity 19CHL) 17.2	2 e Counting Error (pC/L) 3.13	Total Error (pCHL) 9.16	MDA _(pQ/L) 1.38
---------------------------	----------------------	-------------------------------------	---	----------------------------	--------------------------------------	-------------------------------	------------------------

Quality Control Samples

Alpha

Redonucide Laboratory Control (LC) SCAGC-9089-LCB

Leberatory Duplicate (LD) SCADC-9089-LD1

Matrix Spike (MS)

Preparation Blank (PS) SCAQC-9089-PB

Radioanalytical Results

Quality Control Sample Laboratory Control (LC1)

Report Identification Number: \$9068_9089

Project Name:	QTIE - TN&A	Chain-of-Custody Number:	None	Matrix	Water
Site Sample ID:	Nib				
Other Sample ID:	LCI	Collection Date:	5/27/2009 11:15:00 AM	Date Received: Laboratory Code:	5/28/2009.8:45:00. SCA

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Activity (pOIL)	2 e Counting Error (pCML)	e-descrip	MDA (pGif.)
ACINOS	U-233/234	8CAGC40874.01	06/24/09 16:55	4.80	0.694	1.18	0.060
ACW03	U-238	SCAQC-9067-LC1	06/24/09 16:56	4.82	0.696	1.19	0.026

	50.510.950.030.050.50	Quality Control Sa	mples	Control Marketin
Sadjonucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Presention, Stank (PS):
	SCAQC-9067-LC1	9CAQC-9067-LD1		SCAQC-9067-PB1

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: 59006_9089

Project Name: OTIE - TNSA

Chain-of-Custody Number:

Matrix: Water

Site Sample ID: CP-0905005

Other Sample ID: LD1

Collection Date: 5/27/2009 11:45:00 AM

Date Received: 5/28/2009 8:45:00.

Method Number	Badiotucide	Laboratory Sample ID	Analysis _Date/Time_	Activity (sQU)	2 a Counting Error (pCVL)	Total Error (pQ/L)	MDA (bCIL)
EPA 903.1		SCAQC-9068-LD1		2.37	0.394	0.814	0.414
EPA 904.0	BA-228	SCACC-9068-LD1	06/03/09 17:44	0.718	0.398	0.453	0.563

	Laboratory	Duplicate of
Redionucide	Sample ID	Sample ID
RA-226	SCAQC-9058-LD1	OT109-9068-01
RA-228	SCAQC-9066-LD1	OT109-9068-01

Quality Control Samples					
Badionuolde	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)	
Re	SCAQC-9068-LC1	SCAQC-9068-LD1	SCAQC-9068-MS1	SCAQC-9068-P9	

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9068_9089

Project Name: OTIE - TNSA Chain-of-Custody Number: Metric: Water
Site Sample ID: CP-0805028
Other Sample ID: LD1 Collection Date: 5/27/2009 1:15:00 PM Date Received: 5/28/2009 8:45:00
Laboratory Code: SCA

Method Number	Rediscuside	Laboratory Sample ID	Analysis Date/Time	Activity (pQ/L)	2 e Counting Error (pQ/L)	Total Error (pC)(L)	MDA (pCHL)
EPA 900.0	ALPHA	SCAQC-8068-LD1	06/22/09 17:20	-0.046	0.508	0.506	1.06
EPA 900.0	BETA	SCAQC-9066-LD1	06/15/09 15:49	0.127	0.616	0.617	1.00
EPA 900.0	BETA	SCAGC-9068-LD1	06/22/09 17:20	0.000	0.000	0.135	0.000

Labo	vetory Samples for Di	uplicates.
Badonucide	Laboratory Sample ID	Duplicate of Sample ID
ALPHA	SCAQC-9068-LD1	OT109-9068-13
BETA	SCAQC-9068-LD1	OT109-9068-13

Quality Control Samples						
Sadionucida Alpha	Leboratory Control (LC)	Laboratory Duplicate (LD) SCAQC-9068-LD1	Matrix Stalke (MS)	Preparation Black (PB) SCAQC-9068-PB1		
Beta	SCAQC-9068-LCB	SCAQC-9068-LD1		SCAGC-9068-PB1		

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9068_9089

Project Name:	OTIE - TNSA	Chain-of-Custody Number:		Matrix	Water
Site Sample ID:	CP-0905005				
Other Sample ID:	LD4	Collection Date:	5/27/2009 11:45:00 AM	Date Received: Laboratory Code:	5/28/2009 8:45:00, SGA

		Laboratory	Analysis	Activity	2 e Counting Error	Total Error	MDA
Method Number	Regionuside	Sample ID	Date/Time	_(pCVL)	(BC/L)	(PCVL)	_(pC/L)
SM 7110C		SCAQC-9089-LD1			4.10	16.0	1.93

	Laboratory	Duplicate of
900000000	Sample ID	Sample D
ALPHA.	SCAQC-9089-LD1	OT109-9089-01

	STANDARD CONTRACTOR	Quality Control Sa	mples	
Badonoolde	Laboratory Control (LC)	Laboratory Duplicate (LD)	Matrix Spike (MS)	Preparation Blank (PB)
Alpha	SCACC-9088-LCB	SCADC-9089-LD1		SCAQC-9089-PB

Radioanalytical Results

Quality Control Sample Duplicate (LD1)

Report Identification Number: \$9055_9059

Project Name: QTIE : TNSA Chain-of-Custody Number: Matrix: Water
Site Sample ID: CP-0905015

Other Sample ID: LD1 Collection Date: 5/25/2009 5:30:00 AM Date Received: 5/25/2009 5:45:00

Method Number	Sadiopudide	Laboratory Sample ID	Analysis Date(Time_	Addylty _(pC/L)_	2 a Counting Error (pC/L)	Total Error	MDA (pG/L)
ACWGS	U-233/234	SCAQC-6067-LD1	06/24/09 18:55	36.6	4.60	8.99	0.090
ACW(3)	U-235	8CAGC-9087-LD1	06/24/09 10:56	1.67	0.560	0.745	0.110
ACWGS	U-238	8CAQC-9067-LD1	06/24/09 16:56	36.5	4.38	6.51	0.089

Labo	ratory Samples for D	up/icates
Badionucide	Laboratory Sample ID	Duplicate of Sample ID
U-234	SCAQC-9067-LD1	QT109-9067-Q1
U-235	SCAQC-9067-LD1	QT109-9067-Q1
U-238	8CAGC-80674.D1	OT109-9067-01

		Quality Control Sar	mples	
Radionucide	Laboratory Control (LC)	Laboratory Duplicate (LD)	Metrix Solke (MS)	Preparation Blank (PS)
U	SCAQC-8067-LC1	SCAQC-906T-LD1		SCAQC-6067-P81

Radioanalytical Results

Quality Control Sample Matrix Spike (MS1)

Report Identification Number: \$9068_9089

Project Name: QTIE - TNSA Chain-of-Custody Number: None Metric: Water
Size Sample ID: CP-0905006

Other Sample ID: MS1 Collection Date: 5/27/2009 12:00:00 PM Date Received: 5/25/2009 8:45:00 Laboratory Code: SCA

Method Number	Badionucide	Laboratory Sample ID	Analysis Date/Time	Activity (pO/L)	2 e Counting Error (pC/L)	Total Error (pCVL)	MDA (sQ(E)
EPA 903.1	RA-226	8CAQC-9068-MS1		12.5	0.804	3.84	0.442
EPA 904.0	RA-228	SCAQC-9068-MS1	06/03/09 17:39	5.64	0.776	1.86	0.542

Guality Central Samples

Basicrucide Laboratory Control (LC) Laboratory Duplicate (LD) Matrix Solve (MS) Preparation Blank (PB)

Ra SCAGC-9068-LC1 SCAGC-9068-LD1 SCAGC-9068-MS1 SCAGC-9068-PB

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report Identification Number: \$9068_9089

Project Name: QTIE - TN&A

Chain-of-Custody Number: None

Matrix: Water

Site Sample ID: N/A.

Other Sample ID: PS

Collection Date: 5/28/2009 0:45:00 AM

Date Received: 5/25/2009 5:45:00

Method Number	Sationuclida	Laboratory Sample ID	Analysis Date/Time	Activity (bC(L)	2 a Counting Error (aCIA.)	Total Error (pCVL)	MDA (bG(L)
EPA 900.0	ALPHA	SCAQC-9068-P98	06/30/09 11:07	-0.065	0.669	0.670	1.41
EPA 900.0	ALPHA	SCAQC-9068-PB1	06/22/09 17:20	0.196	0.706	0.713	1.55
DPA 900.0	ALPHA	SCAQC-9068-P91	06/15/09 15:49	-0.190	0.660	0.559	1.04
EPA 900.0	BETA	SCAQC-9068-PBB	06/30/09 11:07	-0.077	0.678	0.578	1.04
EPA 900.0	BETA	SGAQC-9056-PB1	06/22/09 17:20	0.000	0.000	0.135	0.000
EPA 900.0	BETA	SCAQC-9068-P81	06/15/09 15:49	-0.175	0.608	0.610	1.06
EPA 903.1	RA-226	SCAGC-9068-PB	06/09/09 18:35	0.103	0.250	0.252	0.425
EPA 904.0	RA-228	SCAQC-9066-PB	06/03/09 17:43	0.407	0.334	0.356	0.510

		Quality Control Sa	mples	
Radionucide Alpha	Laboratory Control (LC)	Leboratory Duplicate (LD) SCAQC-9068-LD1	Matrix Spike (MS)	Preparation Blank (PB) SCAQC-9088-PB1
Beta	SCAQC-9068-LCB	SCAGC-9068-LD1		SCAQC-9068-PB1
Sa	SCAQC-9068-LC1	SCAQC-9968-LD1	SCAQC-6068-MS1	SCAQC-9068-PB

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report Identification Number: \$9068_9069

Project Name: OTIE - TNSA Chain-of-Custody Number: Nigne Site Sample ID: N/A

Other Sample ID: PB

10.000

Matrix: Water

Collection Date: 5/25/2009 8:45:00 AM Date Received: Laboratory Code:

Date Received: 5/25/2009 8:45,00, Laboratory Code: SCA

		Laboratory	Analysis		2 o Counting Error		MDA
Method Number	Badonuciós	Sample ID	_Date/Time_	_(pO(L)	(2C(L)	(BC/L)	
SM THISC		SCAQC-9089-PB			1.21	1.21	2.33

		Quality Control Sar	mples	
Radionuclide	Laboratory Control (LC)	Leboratory Duplicate (LD)	Matrix Solve (MS)	Preparation Blank (PS)
Alpha	SCAQC-9089-LCB	SCAQC-9089-LD1		SCAQC-9089-PB

Radioanalytical Results

Quality Control Sample Preparation Blank (PB)

Report identification Number: 09068_9089

			Mana	Matrix	Wooden'
Project Name:	OTIE : TNSA	Chain-of-Custody Number	District		connected 8-45-00
Ste Sample IC:	365	Collection Date:	5/21/2009 11:15:00 AM	Date Received: Laboratory Code:	5/25/2009 8:45:00. SGA
Other Sample ID:	CB				1101

		Laboratory	Analysis	2.000.000	2 a Counting Error	Total Error (pG/L)	MOA BCILL
Method Number vcW03	U-233/234	Sample ID SCAQC-9967-P91	DRG4/09 10:00	0.000	0.005 0.000 0.084	0.086 0.135 0.085	0.981 0.100 0.081
CW03	U-235 U-236	SCAQC-906T-PR1	06/24/09 16:56	0.080			

Badionuclide	Laboratory Control (LC) SCACC-9067-LC1	Quality Control Sumples Leboratory Dublicate (LD) Matrix Spike (MS SCAQC-9067-LD1	E Preparation Brank (PB) SCAGC-9067-PB1

Radioanalytical Results

Quality Control Sample Evaluation

Raport Identification Number: \$9068_9089

Project Name: QTIE - TNSA Matrix: Water

		Labora	itory Contol Samp	ple (LC1) Evaluation	en.	
statud Montar	Badonyskile	Laboratory Sample ID	(CV) Decay Corrected Activity of Spike Added (pQUL)	(OV) Laboratory Control Sample Activity (3G/L)	Laboratory Control Sample 15 Recovery (Accurator)	Number of or Between CV and Ch
Sethod Number IM 7110C	ALPHA	SCAQC-9089-LCB	15.0 ± 0.460	17.2 ± 9.16	115	0.363
PA 900.0	BETA	SCAQC-9068-LCB	17.3 ± 0.399	58.2 ± 5.78	106	0.209
	-	SGAQC-9067-LC1	4.09 ± 0.025	4.80 ± 1.18	117	0.929
CW03	U-233/234		4.09 ± 0.025	4.82 = 1.19	118	0.957
CW03	U-238	SCAQC-9067-LC1		11.2 a 3.43	99.7	0.012
PA 903.1	RA-226	SCAQC-9068-LC1	11.2 a 0.134 7.19 a 0.288	7.85 ± 2.53	109	0.378

		Ma	trix Spike Sample	(MS1) Evaluatio	n		
Method Number	Badonorleia	Laboratory Sample ID	(CV) Decay Corrected Activity of Spike Added (pG/S)	Matrix Spike Sample Activity (pGHL)	(OV) Native Sample Activity (eQVL)	Matrix Spike Sample % Recovery (Appublic)	Number of Between CV and O
EPA 903.1 EPA 904.0	RA-228 RA-228	SCAQC-9068-MS1 SCAQC-9068-MS1	11.2 ± 0.134 7.19 ± 0.288	12.5 ± 3.84 5.64 ± 1.85	4.44 ± 1.42 0.293 ± 0.356	72.1 74.6	1.20

		Laborato	ry Dup	lica	te Sam	iple (LD	1) E	valuati	ion	Ratio of the Difference Setween the Sample
turis di Sirenbar	Padroville	Laboratory Sample ID		nel S Activi			ate l		Ottlerence Between Original Activity and Duplicate Sample Activity	Activity and the Propagated Measurement at 1 o (FifE)
SM 7110C	ALPHA	SGAQC-9089-LD1	32.1		16.0	30.8		16.0	1.25	0.108
	ALPHA	SCAQC-9068-LD1	-0.469	*	0.727	-0.046		0.508	0.423	0.963
EPA 900.0		SCAGO-9099-LD1	-0.489		0.727	-0.505		0.733	0.036	0.070
EPA 900.0	ALPHA.	SCAQC-9988-LD1	1.25		0.851	0.127	#	0.617	1.12	2.13
PA 900.0	BETA	SCAGC-9068-LD1	1.25		0.851	0.000	+	0.135	1.26	2.90
DPA 900.0	BETA		35.4		8.19	38.6		8.99	3.24	0.533
ACW03	U-233/234	SCAQC-9087-LD1	1.59		0.710	1.67		0.745	0.085	0.165
ACW(03)	U-235	SCADC-9067-LD1			8.67	36.5		8.51	1.08	0.178
ACW(03	U-238	SCAGC-9087-LD1	37.6					0.814	0.334	0.814
EPA 903.1 EPA 904.0	RA-226 RA-226	SCAQC-9068-LD1 SCAQC-9068-LD1	0.547		0.722	0.718		0.463	0.170	0.656

Radioanalytical Results

Quality Control Tracer Yield

Report Identification Number: \$8056_9059

Project Name: QTIE - TNSA Laboratory Code: SQA

	0.000
Laboratiny Sample ID	Therese.
QT109-9067-01	90.68
OT109-9068-01	92.06
OTIO9-9068-01B	92.06
OT109-9068-02	82.57
OT109-9068-028	82.67
OT109-9068-07	88.97
OTIO9-9068-07B	88.97
OT109-9068-08	84.54
OTIOS-9068-08B	84.64
QT109-9068-09	80.32
OTIO9-9068-098	80.32
OT109-9068-10	87.26
OT109-9065-10B	87.26
OT109-9068-11	89.92
OT109-9068-11/8	89.92
OT109-9068-12	90.18
OTIO9-9088-12B	90.18
8CAQC-9067-LC1	72.45
SCAQC-9067-LD1	83.04
SCAQC-9067-PB1	93.12

Radioanalytical Results

Quality Control Chemical Recovery

Report Identification Number: 59058_9089

Project Name: QTIE - TNSA

Laboratory Code: SCA

Laboratory Sample ID	Rs-228
OTI09-9068-01	137.64
OT109-9088-018	137.64
OT109-9088-02	137.64
OTI09-9068-028	137.64
OTI09-6068-03	137.64
QT109-9068-03B	137.64
QT109-9068-04	137.64
OTIO9-9068-04B	137.64
OT109-9068-05	137.64
OTION-9068-058	137.64
OT109-9068-06	137.64
OT109-9068-068	137.64
OTI09-9068-07	137.64
OT109-9068-078	137.64
QT109-9088-08	137.64
OT109-9068-088	137.64
OTIO9-9068-09	137.64
OT109-9068-098	137.64
OT109-9068-10	137.64
OTIO9-9008-10B	137.64
OT109-9068-11	137.64
OTIO9-9068-119	137.64
QT(09-6068-12	137.64
QT109-9068-12B	137.64
OT109-9068-13	137.64
SCAQC-9068-LC1	137.64
SCAGC-9068-LCB	137.64
SCAQC-9088-LD1	137.64
SCAQC-9058-MS1	137.64
SCAQC-9068-PB	137.64
SCAQC-9068-PB1	137.64
SCAQC-9068-PBB	137.64

Appendix D Data Validation Report