## FIELD SAMPLE PLAN ADDENDUM SURFACE WATER AND SEDIMENT SAMPLING SILVERNALE, R2A, AND R2B RETENTION PONDS AND DRAINAGES SANTA SUSANA FIELD LABORATORY SITE

| TO:                 | Craig Cooper, EPA Region 9 RPM                                      |
|---------------------|---------------------------------------------------------------------|
| FROM:               | T. Stewart Williford, HGL Geologist                                 |
| THROUGH:            | L. Steven Vaughn, HGL Project Manager                               |
| CC:                 | Andrew Bain, EPA Region 9 RPM                                       |
|                     | Mary Aycock, EPA Region 9 RPM                                       |
|                     | Gregg Dempsey, Technical Advisor                                    |
| DATE:               | August 18, 2011                                                     |
| SUBJECT:            | FSP Addendum for Surface Water and Sediment in Area II and Area III |
| <b>CONTRACT NO:</b> | EP-S7-05-05                                                         |
| TASK ORDER NO:      | 0038, Area IV Radiological Study                                    |

### **1.0 INTRODUCTION**

HydroGeoLogic, Inc. (HGL) has been tasked by the U.S. Environmental Protection Agency (USEPA) to conduct a radiological characterization study at Area IV and the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) located in Ventura County, California. This work is being executed under EPA Region 7 Architect and Engineering Services Contract EP-S7-05-05, Task Order 0038. The technical lead on the project is USEPA Region 9.

This document supports the field implementation of the surface water and sediment sampling program and is an addendum to the Final Phase I Field Sampling Plan (FSP) for Groundwater, Surface Water, and Sediment (HGL, 2010a). A description of the overall project goals, data quality objectives, sampling strategy, laboratory analytical suites, data quality control, and data evaluation are described in the FSP. All quality measures and documentation requirements detailed in the Phase I FSP apply to this field effort.

This FSP Addendum documents the surface water and sediment sampling activities that will be conducted at the Silvernale retention pond and associated drainages in Area III, and at the R2A/R2B retention ponds and associated upgradient drainages in Area II and III (Figure 1).

### 2.0 SAMPLING PROGRAM

As part of the Area IV Radiological Study, sediment samples were collected during December 2010, and surface water samples were collected during March 2011. A total of 40 sediment samples and 33 surface water samples were collected from drainage ways within Area IV and

the Northern Buffer Zone. Figures 2 and 3 present sediment and surface water sampling locations, respectively.

Surface water run-off from portions of Area IV also drains south into the Silvernale and R2 ponds. Because surface water flows from known radiological use and release areas in Area IV, surface water may have transported radiological contamination to these drainage ways and ponds in Area II and Area III. The objective of this FSP is to investigate the current nature and extent of such potential radiological contamination.

Figure 1 presents the location of the Silvernale and the R2 retention ponds and their associated inflow drainage ways.

### 2.1 SEDIMENT SAMPLING

Figure 4 presents the potential sediment sampling locations that will be sampled as part of this FSP Addendum.

Sample locations were selected after historical aerial photographs were evaluated and a site walk was conducted in order to identify past stream flow locations, past ponding/sediment accumulation locations, historic discharge points to each pond, and elevation of each discharge point.

#### Drainage Ways

Sample locations may be adjusted in the field based on field observations. Sediment sample locations will be targeted in portions of the drainage features where sediment has been accumulating and/or is currently accumulating. Target locations include the low-velocity zones inside of drainage meanders and over bank deposits where finer-grained materials are present.

Two sediment samples will be collected within Area III from drainage ways flowing into the Silvernale pond. A total of 9 sediment samples will be collected within Area II and Area III from drainage ways flowing into the R2 ponds (Figure 4).

The sediment samples will be collected from 0 to 6 inches below ground surface using a stainless steel trowel in accordance with the Phase I Groundwater, Surface Water and Sediment FSP (HGL, 2010a).

#### **Retention Ponds**

Five sediment samples will be collected from the Silvernale pond and a total of three sediment samples will be collected from the R2 ponds (Figure 4).

Sediment samples will be collected in the late summer or early fall of 2011 when the ponds are either dry or have very little water in them. An attempt will be made to collect the samples at the sediment/native soil interface. The sediment will be logged by a qualified Geologist in accordance with the Phase I Groundwater, Surface Water and Sediment FSP (HGL, 2010a).

If groundwater is not encountered an attempt will be made to install a 2 inch diameter polyvinyl chloride (PVC) pipe in order to conduct a downhole gamma scanning survey in accordance with Section 5.4 of the Field Sampling Plan for Soil Sampling (HGL, 2010c). If a gamma anomaly is detected a sample will be collected from the anomaly interval. If no anomaly is detected or a PVC pipe cannot be installed, a sample will be collected from the 5 foot interval of sediment on top of the native soil. A stainless steel hand auger will be used to collect the retention pond sediment samples.

### 2.2 SURFACE WATER SAMPLES

Figure 4 presents the potential surface water sampling locations that will be sampled as part of the R2A, R2B, and Silvernale surface water investigation.

#### **Retention Ponds**

Four surface water samples will be collected from the R2A and R2B retention ponds and two surface water samples will be collected from the Silvernale pond (Figure 4). Because surface water samples have already been collected from locations within Area IV, just prior to flowing into Area II and Area III, no surface water samples will be collected from drainage ways under this FSP Addendum.

Surface water samples will be collected from the retention ponds using two methods. A surface water sample will be collected from the surface of the pond using the direct dip method as described in Section 4.3.1 of the Phase I FSP (HGL, 2010a). A second sample will be collected from a depth of 1 foot above the bottom of the pond using a Van Dorn sampler (Attachment 3). Surface water samples will be collected when there is sufficient water volume to collect the discrete depth samples.

### 2.3 LABORATORY ANALYSIS

Sediment samples will be tested for the radionuclides as presented in Table 1. In addition to the default suite of radionuclides, all sediment samples will be tested for a full range of additional site-specific analyses (i.e. Am-243, C-14, H-3, I-129, Ni-59, Ni-63, Tc-99, and Pm-147). These analyses were added based on the operational history of facilities located within surface water drainage pathways from Area IV (Figure 1). For example, the Silvernale Pond and associated drainages received runoff from the Sodium Reactor Experiment Pond, the Old Conservation Yard and the New Conservation Yard. Surface water samples will be tested for the radionuclides presented in Table 2.

Table 3 provides the location identification number for each sediment sample that will be collected in the drainage ways and ponds and the technical rationale for the selection of each sample location. Also summarized in this table is the suite of radiological analyses that will be performed on each sample, as well as other field-pertinent information including sample type, and general proximity to radiological facilities.

### 3.0 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

All quality measures and documentation requirements detailed in the Phase I FSP apply to this field effort. Quality Assurance (QA)/Quality Control (QC) samples will include field duplicates, laboratory duplicates, matrix spike, and equipment rinsate blanks. QA/QC samples will be collected in accordance with the Quality Assurance Project Plan for Groundwater, Surface Water, and Sediment (HGL, 2010b).

#### Sediment Samples

Field duplicates for the sediment samples will be collected at a frequency of one sample per every 10 samples taken.

#### Surface Water

Field duplicate samples will be collected at a frequency of one sample per every 10 samples taken. Matrix spike samples and laboratory duplicate samples will be collected a frequency of one sample per every 20 samples taken.

#### **Equipment Rinsate Blank**

One equipment (rinse) blank will be collected each day by each field team, where applicable. Equipment blanks will consist of decontamination water poured over or through a freshly decontaminated piece of equipment used by that team during that day's sampling activities.

### 4.0 **REFERENCES**

- HydroGeoLogic, Inc., 2010a. Final Phase I Field Sampling Plan for Groundwater, Surface Water, and Sediment, Area IV Radiological Study, Santa Susana Field Laboratory, Ventura County, California. July 28, 2010.
- HydroGeoLogic, Inc., 2010b. Quality Assurance Project Plan for Groundwater, Surface Water, and Sediment, Area IV Radiological Study Santa Susanna Field Laboratory Ventura County, California. August 11, 2011.
- HydroGeoLogic, Inc., 2010c. Field Sampling Plan for Soil Sampling, Area IV Radiological Study, Santa Susana Field Laboratory Ventura County, California. October 4, 2010.

### ATTACHMENTS

| Attachment 1 | Tables   |
|--------------|----------|
| Attachment 2 | Figures  |
| Attachment 3 | Appendix |

## **ATTACHMENT 1**

### **TABLES**

- Table 1Default and Site Specific Analytical Suites for Sediment Samples
- Table 2Priority 1 Radionuclides for Analysis for Surface Water
- Table 3Summary of Sediment and Surface Water Sample Locations at<br/>Silvernale and the R2A/R2B Retention Ponds

| Method       | Radionuclides                                                                                                                         | Site Specific Locations                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Default Suite                                                                                                                         |                                                                                                                                                                    |
|              | Ac-227, Ac-228, Ag-108, Ag-108m, Ba-133,<br>Ba-137m, Bi-212, Bi-214, Cd-113m, Cf-249,                                                 |                                                                                                                                                                    |
| Gamma Spec I | Co-60, Cs-134, Cs-137, Eu-152, Eu-154, Eu-<br>155, Ho-166m, K-40, Na-22, Nb-94, Np-236,<br>Nr 220, Pa 231, Pb 212, Pb 214, Pr 220, Pr | All Locations                                                                                                                                                      |
|              | Np-239, Pa-231, P0-212, P0-214, Kii-220, Kii-<br>222, Sb-125, Sn-126, Te-125m, Th-234, Tl-<br>208, and Tm-171                         |                                                                                                                                                                    |
| LCS 3        | Sr-90/Y-90                                                                                                                            | All Locations                                                                                                                                                      |
| Alpha Spec 2 | Am-241, Cm-243, Cm-244, Cm-245, Cm-246                                                                                                | All Locations                                                                                                                                                      |
| Alpha Spec 3 | U-233, U-234, U-235, U-236, U-238                                                                                                     | All Locations                                                                                                                                                      |
| Alpha Spec 4 | Th-228, Th-230, Th-232, Th-229                                                                                                        | All Locations                                                                                                                                                      |
| Alpha Spec 7 | Pu-236, Pu-238, Pu-239, Pu-240, Pu-244                                                                                                | All Locations                                                                                                                                                      |
|              | Site Specific Suite                                                                                                                   |                                                                                                                                                                    |
| GPC 3        | Н-3                                                                                                                                   | Sodium Reactor Experiment (SRE),<br>Buildings:4010, 4059, 4028, 4024 and at<br>the site of the tritium groundwater plume.                                          |
| LCS 8        | C-14                                                                                                                                  | SRE, reactor areas which used graphite, and<br>some percentage of random sampling due to<br>potential drift from C-14 which may have<br>been used in rocket_fuels. |
| LCS 6        | Ni-63, Ni-59                                                                                                                          | Reactors, the Hot Lab, the burn pit, and here co-60 is observed above background.                                                                                  |
| LCS 5        | Tc-99                                                                                                                                 | Reactor buildings, the Hot Lab, and the burn<br>pit. Add a small percentage to random<br>samples.                                                                  |
| LCS 4        | I-129                                                                                                                                 | Hot Lab only.                                                                                                                                                      |
| LCS 1        | Pm-147                                                                                                                                | Hot Lab only.                                                                                                                                                      |
| Alpha Spec 1 | Am-243                                                                                                                                | Only where accelerators where used.                                                                                                                                |

 Table 1

 Default and Site Specific Analytical Suites for Sediment Samples

| Symbol                | Radionuclide                  | Half-Life  | Units   | Priority 1 Groundwater<br>Analytes* |
|-----------------------|-------------------------------|------------|---------|-------------------------------------|
| Ac-227                | actinium-227                  | 21.772     | Years   | •                                   |
| Ac-228                | actinium-228                  | 6.15       | Hours   | •                                   |
| Ag-108                | silver-108                    | 2.37       | Minutes | •                                   |
| Ag-108m               | silver 108m                   | 418        | Years   | •                                   |
| Ba-133                | barium-133                    | 10.5       | Years   | •                                   |
| Ba-137m               | barium-137m                   | 2.552      | Minutes | •                                   |
| Bi-212                | bismuth-212                   | 60.55      | Minutes | •                                   |
| Bi-214                | bismuth-214                   | 19.9       | Minutes | •                                   |
| Cd-113m               | cadmium-113m                  | 14.1       | Years   | •                                   |
| Cf-249                | californium-249               | 351        | Years   | •                                   |
| Co-60                 | cobalt-60                     | 5.275      | Years   | •                                   |
| Cs-134                | cesium-134                    | 2.0652     | Years   | •                                   |
| Cs-137                | cesium-137                    | 30.08      | Years   | •                                   |
| Eu-152                | europium-152                  | 13.537     | Years   | •                                   |
| Eu-154                | europium-154                  | 8.593      | Years   | •                                   |
| Eu-155                | europium-155                  | 4.753      | Years   | •                                   |
| Н-3                   | tritium (hydrogen-3), organic | 12.32      | Years   | •                                   |
| Ho-166m               | holmium-166m                  | 1,230      | Years   | •                                   |
| K-40                  | potassium-40                  | 1.25E + 09 | Years   | •                                   |
| Na-22                 | sodium-22                     | 2.6027     | Years   | •                                   |
| Nb-94                 | niobium-94                    | 2.03E + 04 | Years   | •                                   |
| Np-236a               | neptunium-236a                | 1.53E + 05 | Years   | •                                   |
| Np-239                | neptunium-239                 | 2.356      | Days    | •                                   |
| Pa-231                | protactinium-231              | 32,760     | Years   | •                                   |
| Pb-212                | lead-212                      | 10.64      | Days    | •                                   |
| Pb-214                | lead-214                      | 26.8       | Minutes | •                                   |
| Sb-125                | antimony-125                  | 2.7586     | Years   | •                                   |
| Sn-126                | tin-126                       | 2.30E+05   | Years   | •                                   |
| Sr-90                 | strontium-90                  | 28.8       | Years   | •                                   |
| Te-125m               | tellurium-125m                | 57.4       | Days    | •                                   |
| Th-231                | thorium-231                   | 25.52      | Hours   | •                                   |
| Th-234                | thorium-234                   | 24.1       | Days    | •                                   |
| T1-208                | thallium-208                  | 3.053      | Minutes | •                                   |
| Tm-171                | thulium-171                   | 1.92       | Years   | •                                   |
| U-233                 | uranium-233                   | 1.59E+05   | Years   | •                                   |
| U-234                 | uranium-234                   | 245,500    | Years   | •                                   |
| U-235                 | uranium-235                   | 7.04E+08   | Years   | •                                   |
| U-236                 | uranium-236                   | 2.34E+07   | Years   | •                                   |
| U-238                 | uranium-238                   | 4.47E+09   | Years   | •                                   |
| Gross Alpha Radiation | N/A                           | N/A        | N/A     | •                                   |
| Gross Beta Radiation  | N/A                           | N/A        | N/A     | •                                   |

Table 2Priority 1 Radionuclides for Analysis for Surface Water

#### Notes:

\* Suite may change. See Section 2.2 of the Field Sampling Plan for a discussion.

N/A - not applicable

Table 3Summary of Sediment and Surface Water Sample Locations at Silvernale and the R2A/R2B Retention Ponds

| Location<br>ID | Sample Type   | Pond            | Location Description                                                    | Technical Justification                                                                                                                                         | Analytes                                                              |
|----------------|---------------|-----------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1              | Sediment      | Silvernale      | Northeast portion of Area III, north of Silvernale pond.                | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 2              | Sediment      | Silvernale      | Northeast portion of Area III, north of Silvernale pond.                | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 3              | Sediment      | Silvernale      | East portion of Silvernale pond.                                        | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 4              | Sediment      | Silvernale      | East portion of Silvernale pond.                                        | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 5              | Sediment      | Silvernale      | East portion of Silvernale pond.                                        | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 6              | Sediment      | Silvernale      | Center portion of Silvernale pond.                                      | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129,<br>Ni-59, Ni-63, Tc-99, and Pm-147 |
| 7              | Surface Water | Silvernale      | Center portion of Silvernale pond. Surface of the pond.                 | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Priority 1 Suite Analytes                                             |
| 7              | Surface Water | Silvernale      | Center portion of Silvernale pond. Approximately 1 ft from the bottom   | Receives surface water runoff from the southeastern portion of Area IV Subarea 6                                                                                | Priority 1 Suite Analytes                                             |
| /              | Surface Water | Silvernaie      | Central portion of Area III. Northwest of Silvernale pond. Drainageway  | Deceives surface water runoff from Area IV Subareas 5A 5B 5C 5D and the Silvernale pond as                                                                      | Default Am 243 C 14 H 3 I 120                                         |
| 8              | Sediment      | R2A/R2B         | eviting the south central portion of Subarea 5A                         | well as the vicinity of Puilding 4000 and former Puilding 4020                                                                                                  | Ni 50 Ni 63 Te 00 and $Pm 147$                                        |
|                |               |                 | Central portion of Area III. Southwest and downgradient of Silvernale   | Receives surface water runoff from Area IV Subareas 5A 5B 5C 5D and the Silvernale pond as                                                                      | Default $Am-243$ C-14 H-3 I-129                                       |
| 9              | Sediment      | R2A/R2B         | nond                                                                    | well as the vicinity of Building 4009 and former Building 4020                                                                                                  | Ni-59 Ni-63 Tc-99 and $Pm-147$                                        |
| 10             | G. 11.        |                 | West central portion of Area III. Drainageway exiting the south central | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
| 10             | Sediment      | R2A/R2B         | portion of Subarea 5B.                                                  | well as, the vicinity of Building 4009 and former Building 4020. Part of the 17th Street Drainage.                                                              | 59. Ni-63. Tc-99. and Pm-147                                          |
| 11             | Cadimant      |                 | West central portion of Area III. Drainageway exiting the south central | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
| 11             | Sediment      | KZA/KZD         | portion of Subarea 5B. Part of the 17th Street Drainage.                | well as, the vicinity of Building 4009 and former Building 4020. Part of the 17th Street Drainage.                                                              | 59, Ni-63, Tc-99, and Pm-147                                          |
| 12             | Sediment      | <b>Ρ</b> 2Λ/Ρ2Β | West portion of Area III. Drainageway exiting the southeast portion of  | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
| 12             | Seuiment      | KZA/KZD         | Subarea 5C.                                                             | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 13             | Sediment      | R74/R7R         | West portion of Area III. Drainageway exiting the southeast portion of  | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
| 15             | Scument       | K2A/K2D         | Subarea 5C.                                                             | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 14             | Sediment      | R2A/R2B         | South central portion of Area III. Drainageway exiting the southeast    | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
|                | Seament       |                 | portion of Subarea 5A.                                                  | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 15             | Sediment      | R2B             | Western portion of Area II. Northern portion of the R2B pond.           | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
|                |               |                 | r · · · · · · · · · · · · · · · · · · ·                                 | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 16             | Sediment      | R2B             | Western portion of Area II. Southern portion of the R2B pond.           | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
| _              |               |                 | r r r r r r r r r r r r r r r r r r r                                   | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 17             | Sediment      | R2A             | West central portion of R2A pond.                                       | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, Ni-                                |
|                |               | -               |                                                                         | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, Ni-63, Tc-99, and Pm-147                                          |
| 18             | Sediment      | R2A             | East central portion of R2A pond.                                       | Receives surface water runoff from Area IV Subareas SA, SB, SC, SD and the Silvernale pond, as                                                                  | Default, Am-243, C-14, H-3, I-129, NI-                                |
|                |               |                 |                                                                         | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | 59, N1-63, Tc-99, and Pm-147                                          |
| 19             | Surface Water | R2A             | Center portion of R2A pond. Surface of the pond.                        | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | Priority 1 Suite Analytes                                             |
| 19             | Surface Water | R2A             | Center portion of R2A pond. Approximately 1 ft from the bottom.         | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as well as, the vicinity of Building 4009 and former Building 4020. | Priority 1 Suite Analytes                                             |
| 20             | Surface Water | R2B             | Center portion of R2B pond. Surface of the pond.                        | Receives surface water runoff from Area IV Subareas 5A, 5B, 5C, 5D and the Silvernale pond, as                                                                  | Priority 1 Suite Analytes                                             |
|                |               |                 |                                                                         | Well as, the vicinity of Building 4009 and former Building 4020.                                                                                                |                                                                       |
| 20             | Surface Water | R2B             | Center portion of R2B pond. Approximately 1 ft from the bottom.         | well as, the vicinity of Building 4009 and former Building 4020.                                                                                                | Priority 1 Suite Analytes                                             |
| 21             | Sediment      | R2A/R2B         | Southwestern portion of Area III.                                       | Receives surface water runoff from Area IV Subareas 5D                                                                                                          | Default, Am-243, C-14, H-3, I-129, Ni-                                |
|                | Seament       |                 | sound south portion of them in:                                         |                                                                                                                                                                 | 59, Ni-63, Tc-99, and Pm-148                                          |
| 22             | Sediment      | Silvernale      | Western portion of the Silvernale pond.                                 | Receives surface water runoff from the southeastern portion of Area IV Subarea 6.                                                                               | Default, Am-243, C-14, H-3, I-129, Ni-                                |
|                |               | •               | 1 · · · · · · · · · · · · · · · · · · ·                                 | r and r a                                                 | 59. Ni-63. Tc-99. and Pm-147                                          |

## ATTACHMENT 2

### FIGURES

- Figure 1 Drainage ways and Retention Pond Locations Areas II and III
- Figure 2 Sediment Samples Collected, Area IV Radiological Study
- Figure 3 Surface Water Samples Collected, Area IV Radiological Study
- Figure 4 Potential Sediment and Surface Water Sampling Locations Sampling Locations Areas II and III



|                       | at Silvernale & R2 Ponds Addendum, SSFL<br>—Ventura County, California<br>Figure 1<br>Drainage Ways and<br>Retention Pond Locations<br>Area II & III |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | U.S. EPA Region 9                                                                                                                                    |
|                       | Legend                                                                                                                                               |
|                       | Drainage Pathways                                                                                                                                    |
| Pulled to Seal of the | Y:\Santa_Susana\EP9038\GW_SW_Sediment_FSP\AreaIIAreaIIISampling\<br>(1)AreaII_SedimentSampling_20110811.mxd                                          |







## ATTACHMENT 3

## APPENDIX

Appendix A Van Dorn Sampler Standard Operating Procedures

### SOP 2.17 DISCRETE DEPTH SURFACE WATER SAMPLING PROCEDURES USING THE VAN DORN SAMPLER SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

## 1.0 PURPOSE

The purpose of this procedure is to describe the methods for collecting discrete depth surface water samples using a Van Dorn sampler. It describes the procedures and equipment to be used to obtain representative surface water samples that are capable of producing accurate quantification of water quality.

## 2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) is applicable to the collection of representative surface water samples from streams, rivers, lakes, ponds, lagoons, embayments, springs and surface impoundments. This procedure provides guidance for routine field operations on environmental projects. Site-specific deviations from the methods presented herein must be approved by the HydroGeoLogic, Inc. (HGL) Project Manager and discussed in the approved project plans.

This SOP was reviewed for general consistency with the standard operating procedure listed in, "U.S.EPA Region 9 Laboratory, Richmond, California, Field Sampling Guidance Document #1225, Surface Water Sampling.

## 3.0 EQUIPMENT AND SUPPLIES

- Electroniic water-level meter capable of 0.01 foot accuracy, if rquired
- Interface probe, if required
- Decontamination supplies
- Personal protective equipment (PPE), Nitrile gloves, Tyvek, over boots, etc.
- Field Sampling Plan (location map, field data from last event, etc.)
- Field log book
- PID or FID instrument (if appropriate) to detect VOCs for health and safety purposes, and to provide qualitative field evaluations
- Field sampling data sheets
- Site specific Health and Safety Plan, the Groundwater Field Sampling Plan (FSP), and Site Reconnaissance Report (SRR).

### 4.0 **PROCEDURES**

When discrete samples are desired from a specific depth, and the parameters to be measured do not require a Teflon<sup>®</sup> coated sampler, a standard Van Dorn sampler may be used (Exhibit 17-1).

The Van Dorn sampler is plastic and is lowered in a horizontal position. A messenger is sent down a rope when the sampler is at the designated depth, to cause the stoppers to close the cylinder, which is then raised (Exhibit 17-2). Water is removed through a valve to fill respective sample containers. With a rubber tube attached to the valve, dissolved oxygen sample bottles can be properly filled by allowing an overflow of the water being collected. With multiple depth samples, care should be taken not to stir up the bottom sediment and thus bias the sample.

### Instructions for sampling with a Van Dorn Bottle:

1. Using a properly decontaminated Van Dorn bottle, set the sampling device so that the sampling end pieces are pulled away from the sampling tube, allowing the water to be sampled to pass through this tube.

2. Lower the pre-set sampling device to the predetermined depth. Avoid bottom disturbance.

3. When the discrete sampler bottle is at the required depth, send down the messenger, closing the sampling device.

4. Retrieve the sampler and discharge the first 10 to 20 mL to clear any potential contamination on the valve. Transfer the sample to the appropriate sample container.

5. Be sure to use special attachments available on some discrete samplers to distribute small volumes at low flow rates; e.g., VOCs at 100 to 200 mL/ min.

### Advantages:

- ability to sample at discrete depths
- ability to sample great depths

### **Disadvantages:**

- open sampling tube is exposed while traveling down to sampling depth
- transfer of sample into sample bottle may be difficult

## 5.0 DECONTAMINATION

The Van Dorn sampler will be decontaminated using the decontamination procedures presented in SOP 2.01 of the Project Field Sampling Plan (HGL, 2010).

# 6.0 RECORDS

Record the sampling information in field log book and on the Sample Data Sheet provided in the Project Field Sampling Plan (HGL, 2010).

# 7.0 QUALITY CONTROL

The project quality assurance (QA)/quality control (QC) Officer is responsible for ensuring that all equipment is calibrated daily prior to use and recording the calibration results on the Calibration Log. The QA Coordinator is responsible for periodically reviewing these results.

## 8.0 **REFERENCES**

- HydroGeoLogic, 2010. Final Phase I Field Sampling Plan for Groundwater, Surface Water, and Sediment. July, 2010.
- U.S. Environmental Protection Agency, 1999 U.S.EPA Region 9 Laboratory, Richmond, California, Field Sampling Guidance Document #1225, Surface Water Sampling. September 1999.

## 9.0 EXHIBIT

- Exhibit 1 Van Dorn Discrete Depth Sampler
- Exhibit 2 Diagram of Van Dorn Discrete Depth Sampler

EXHIBIT 17-1 Van Dorn Discrete Depth Sampler



Exhibit 17-2 Diagram of Van Dorn Discrete Depth Sampler

